Commit f5d86d36 authored by liyinhao's avatar liyinhao
Browse files

reduc test data

parent ea7fdbed
...@@ -4,97 +4,39 @@ from mmdet3d.datasets.pipelines.indoor_loading import IndoorLoadData ...@@ -4,97 +4,39 @@ from mmdet3d.datasets.pipelines.indoor_loading import IndoorLoadData
def test_indoor_load_data(): def test_indoor_load_data():
sunrgbd_train_info = mmcv.load( sunrgbd_info = mmcv.load('./tests/data/sunrgbd/sunrgbd_infos_train.pkl')
'./tests/data/sunrgbd/sunrgbd_infos_train.pkl') sunrgbd_load_data = IndoorLoadData('sunrgbd', False, True, [0.5, 0.5, 0.5])
sunrgbd_load_train_data = IndoorLoadData('sunrgbd', False, True, sunrgbd_results = dict()
[0.5, 0.5, 0.5]) sunrgbd_results['data_path'] = './tests/data/sunrgbd/sunrgbd_trainval'
sunrgbd_train_results = dict() sunrgbd_results['info'] = sunrgbd_info[0]
sunrgbd_train_results[ sunrgbd_results = sunrgbd_load_data(sunrgbd_results)
'data_path'] = './tests/data/sunrgbd/sunrgbd_trainval' sunrgbd_point_cloud = sunrgbd_results.get('point_cloud', None)
sunrgbd_train_results['info'] = sunrgbd_train_info[0] sunrgbd_gt_boxes = sunrgbd_results.get('gt_boxes', None)
sunrgbd_train_results = sunrgbd_load_train_data(sunrgbd_train_results) sunrgbd_gt_classes = sunrgbd_results.get('gt_classes', None)
sunrgbd_train_point_cloud = sunrgbd_train_results.get('point_cloud', None) sunrgbd_gt_boxes_mask = sunrgbd_results.get('gt_boxes_mask', None)
sunrgbd_train_gt_boxes = sunrgbd_train_results.get('gt_boxes', None) assert sunrgbd_point_cloud.shape == (1000, 4)
sunrgbd_train_gt_classes = sunrgbd_train_results.get('gt_classes', None) assert sunrgbd_gt_boxes.shape == (3, 7)
sunrgbd_train_gt_boxes_mask = sunrgbd_train_results.get( assert sunrgbd_gt_classes.shape == (3, 1)
'gt_boxes_mask', None) assert sunrgbd_gt_boxes_mask.shape == (3, 1)
assert sunrgbd_train_point_cloud.shape == (50000, 4)
assert sunrgbd_train_gt_boxes.shape == (3, 7)
assert sunrgbd_train_gt_classes.shape == (3, 1)
assert sunrgbd_train_gt_boxes_mask.shape == (3, 1)
scannet_val_info = mmcv.load('./tests/data/sunrgbd/sunrgbd_infos_val.pkl') scannet_info = mmcv.load('./tests/data/scannet/scannet_infos_train.pkl')
scannet_load_val_data = IndoorLoadData('sunrgbd', False, True, scannet_load_data = IndoorLoadData('scannet', False, True, [0.5, 0.5, 0.5])
[0.5, 0.5, 0.5]) scannet_results = dict()
scannet_val_results = dict() scannet_results[
scannet_val_results['data_path'] = './tests/data/sunrgbd/sunrgbd_trainval'
scannet_val_results['info'] = scannet_val_info[0]
scannet_val_results = scannet_load_val_data(scannet_val_results)
scannet_val_point_cloud = scannet_val_results.get('point_cloud', None)
scannet_val_gt_boxes = scannet_val_results.get('gt_boxes', None)
scannet_val_gt_classes = scannet_val_results.get('gt_classes', None)
scannet_val_gt_boxes_mask = scannet_val_results.get('gt_boxes_mask', None)
assert scannet_val_point_cloud.shape == (50000, 4)
assert scannet_val_gt_boxes.shape == (3, 7)
assert scannet_val_gt_classes.shape == (3, 1)
assert scannet_val_gt_boxes_mask.shape == (3, 1)
sunrgbd_train_info = mmcv.load(
'./tests/data/sunrgbd/sunrgbd_infos_train.pkl')
sunrgbd_load_train_data = IndoorLoadData('sunrgbd', False, True,
[0.5, 0.5, 0.5])
sunrgbd_train_results = dict()
sunrgbd_train_results[
'data_path'] = './tests/data/sunrgbd/sunrgbd_trainval'
sunrgbd_train_results['info'] = sunrgbd_train_info[0]
sunrgbd_train_results = sunrgbd_load_train_data(sunrgbd_train_results)
sunrgbd_train_point_cloud = sunrgbd_train_results.get('point_cloud', None)
sunrgbd_train_gt_boxes = sunrgbd_train_results.get('gt_boxes', None)
sunrgbd_train_gt_classes = sunrgbd_train_results.get('gt_classes', None)
sunrgbd_train_gt_boxes_mask = sunrgbd_train_results.get(
'gt_boxes_mask', None)
assert sunrgbd_train_point_cloud.shape == (50000, 4)
assert sunrgbd_train_gt_boxes.shape == (3, 7)
assert sunrgbd_train_gt_classes.shape == (3, 1)
assert sunrgbd_train_gt_boxes_mask.shape == (3, 1)
scannet_val_info = mmcv.load(
'./tests/data/scannet/scannet_infos_train.pkl')
scannet_load_val_data = IndoorLoadData('scannet', False, True,
[0.5, 0.5, 0.5])
scannet_val_results = dict()
scannet_val_results[
'data_path'] = './tests/data/scannet/scannet_train_instance_data'
scannet_val_results['info'] = scannet_val_info[0]
scannet_val_results = scannet_load_val_data(scannet_val_results)
scannet_val_point_cloud = scannet_val_results.get('point_cloud', None)
scannet_val_gt_boxes = scannet_val_results.get('gt_boxes', None)
scannet_val_gt_classes = scannet_val_results.get('gt_classes', None)
scannet_val_gt_boxes_mask = scannet_val_results.get('gt_boxes_mask', None)
scannet_pcl_color = scannet_val_results.get('pcl_color', None)
scannet_instance_labels = scannet_val_results.get('instance_labels', None)
scannet_semantic_labels = scannet_val_results.get('semantic_labels', None)
assert scannet_val_point_cloud.shape == (50000, 4)
assert scannet_val_gt_boxes.shape == (27, 6)
assert scannet_val_gt_classes.shape == (27, 1)
assert scannet_val_gt_boxes_mask.shape == (27, 1)
assert scannet_pcl_color.shape == (50000, 3)
assert scannet_instance_labels.shape == (50000, )
assert scannet_semantic_labels.shape == (50000, )
scannet_val_info = mmcv.load('./tests/data/scannet/scannet_infos_val.pkl')
scannet_load_val_data = IndoorLoadData('scannet', False, True,
[0.5, 0.5, 0.5])
scannet_val_results = dict()
scannet_val_results[
'data_path'] = './tests/data/scannet/scannet_train_instance_data' 'data_path'] = './tests/data/scannet/scannet_train_instance_data'
scannet_val_results['info'] = scannet_val_info[0] scannet_results['info'] = scannet_info[0]
scannet_val_results = scannet_load_val_data(scannet_val_results) scannet_results = scannet_load_data(scannet_results)
scannet_val_point_cloud = scannet_val_results.get('point_cloud', None) scannet_point_cloud = scannet_results.get('point_cloud', None)
scannet_val_gt_boxes = scannet_val_results.get('gt_boxes', None) scannet_gt_boxes = scannet_results.get('gt_boxes', None)
scannet_val_gt_classes = scannet_val_results.get('gt_classes', None) scannet_gt_classes = scannet_results.get('gt_classes', None)
scannet_val_gt_boxes_mask = scannet_val_results.get('gt_boxes_mask', None) scannet_gt_boxes_mask = scannet_results.get('gt_boxes_mask', None)
assert scannet_val_point_cloud.shape == (50000, 4) scannet_pcl_color = scannet_results.get('pcl_color', None)
assert scannet_val_gt_boxes.shape == (28, 6) scannet_instance_labels = scannet_results.get('instance_labels', None)
assert scannet_val_gt_classes.shape == (28, 1) scannet_semantic_labels = scannet_results.get('semantic_labels', None)
assert scannet_val_gt_boxes_mask.shape == (28, 1) assert scannet_point_cloud.shape == (1000, 4)
assert scannet_gt_boxes.shape == (27, 6)
assert scannet_gt_classes.shape == (27, 1)
assert scannet_gt_boxes_mask.shape == (27, 1)
assert scannet_pcl_color.shape == (1000, 3)
assert scannet_instance_labels.shape == (1000, )
assert scannet_semantic_labels.shape == (1000, )
...@@ -112,7 +112,7 @@ class SUNRGBDData(object): ...@@ -112,7 +112,7 @@ class SUNRGBDData(object):
def process_single_scene(sample_idx): def process_single_scene(sample_idx):
print('%s sample_idx: %s' % (self.split, sample_idx)) print('%s sample_idx: %s' % (self.split, sample_idx))
# convert depth to points # convert depth to points
SAMPLE_NUM = 50000 SAMPLE_NUM = 1000
pc_upright_depth = self.get_depth(sample_idx) pc_upright_depth = self.get_depth(sample_idx)
# TODO : sample points in loading process and test # TODO : sample points in loading process and test
pc_upright_depth_subsampled = random_sampling( pc_upright_depth_subsampled = random_sampling(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment