Commit f1a0211e authored by liyinhao's avatar liyinhao
Browse files

change seed and names

parent 60371607
......@@ -21,8 +21,7 @@ class PointSample(object):
points,
num_samples,
replace=None,
return_choices=False,
seed=None):
return_choices=False):
"""Points Random Sampling.
Sample points to a certain number.
......@@ -37,8 +36,6 @@ class PointSample(object):
points (ndarray): 3D Points.
choices (ndarray): The generated random samples
"""
if seed is not None:
np.random.seed(seed)
if replace is None:
replace = (points.shape[0] < num_samples)
choices = np.random.choice(
......@@ -49,21 +46,21 @@ class PointSample(object):
return points[choices]
def __call__(self, results, seed=None):
point_cloud = results.get('point_cloud', None)
pcl_color = results.get('pcl_color', None)
point_cloud, choices = self.points_random_sampling(
point_cloud, self.num_points, return_choices=True, seed=seed)
results['point_cloud'] = point_cloud
points = results.get('points', None)
pts_color = results.get('pts_color', None)
points, choices = self.points_random_sampling(
points, self.num_points, return_choices=True)
results['points'] = points
if pcl_color is not None:
pcl_color = pcl_color[choices]
if pts_color is not None:
pts_color = pts_color[choices]
instance_labels = results.get('instance_labels', None)
semantic_labels = results.get('semantic_labels', None)
instance_labels = instance_labels[choices]
semantic_labels = semantic_labels[choices]
results['instance_labels'] = instance_labels
results['semantic_labels'] = semantic_labels
results['pcl_color'] = pcl_color
results['pts_color'] = pts_color
return results
......
......@@ -4,10 +4,10 @@ from mmdet3d.datasets.pipelines.indoor_sample import PointSample
def test_indoor_sample():
np.random.seed(0)
scannet_sample_points = PointSample(5)
scannet_results = dict()
scannet_point_cloud = np.array(
[[1.0719866, -0.7870435, 0.8408122, 0.9196809],
scannet_points = np.array([[1.0719866, -0.7870435, 0.8408122, 0.9196809],
[1.103661, 0.81065744, 2.6616862, 2.7405548],
[1.0276475, 1.5061463, 2.6174362, 2.6963048],
[-0.9709588, 0.6750515, 0.93901765, 1.0178864],
......@@ -17,35 +17,35 @@ def test_indoor_sample():
[1.1188195, -0.99211365, 2.5551798, 2.6340485],
[-0.9186557, -1.7041215, 2.0562649, 2.1351335],
[-1.0128691, -1.3394243, 0.040936, 0.1198047]])
scannet_results['point_cloud'] = scannet_point_cloud
scannet_results['points'] = scannet_points
scannet_instance_labels = np.array([15, 12, 11, 38, 0, 18, 17, 12, 17, 0])
scannet_results['instance_labels'] = scannet_instance_labels
scannet_pcl_color = np.array([[77., 74., 63.], [176., 166., 156.],
scannet_pts_color = np.array([[77., 74., 63.], [176., 166., 156.],
[178., 164., 153.], [240., 235., 237.],
[58., 58., 59.], [245., 236., 229.],
[158., 148., 141.], [195., 184., 178.],
[193., 181., 174.], [105., 102., 97.]])
scannet_results['pcl_color'] = scannet_pcl_color
scannet_results['pts_color'] = scannet_pts_color
scannet_semantic_labels = np.array([38, 1, 1, 40, 0, 40, 1, 1, 1, 0])
scannet_results['semantic_labels'] = scannet_semantic_labels
scannet_results = scannet_sample_points(scannet_results, 0)
scannet_point_cloud_result = scannet_results.get('point_cloud', None)
scannet_pcl_color_result = scannet_results.get('pcl_color', None)
scannet_point_cloud_result = scannet_results.get('points', None)
scannet_pcl_color_result = scannet_results.get('pts_color', None)
scannet_instance_labels_result = scannet_results.get(
'instance_labels', None)
scannet_semantic_labels_result = scannet_results.get(
'semantic_labels', None)
scannet_choices = np.array([2, 8, 4, 9, 1])
assert np.allclose(scannet_point_cloud[scannet_choices],
assert np.allclose(scannet_points[scannet_choices],
scannet_point_cloud_result)
assert np.allclose(scannet_pcl_color[scannet_choices],
assert np.allclose(scannet_pts_color[scannet_choices],
scannet_pcl_color_result)
assert np.all(scannet_instance_labels[scannet_choices] ==
scannet_instance_labels_result)
assert np.all(scannet_semantic_labels[scannet_choices] ==
scannet_semantic_labels_result)
np.random.seed(0)
sunrgbd_sample_points = PointSample(5)
sunrgbd_results = dict()
sunrgbd_point_cloud = np.array(
......@@ -59,10 +59,9 @@ def test_indoor_sample():
[-0.74624217, 1.5244724, -0.8678476, 0.41810507],
[0.56485355, 1.5747732, -0.804522, 0.4814307],
[-0.0913099, 1.3673826, -1.2800645, 0.00588822]])
sunrgbd_results['point_cloud'] = sunrgbd_point_cloud
sunrgbd_results['points'] = sunrgbd_point_cloud
sunrgbd_results = sunrgbd_sample_points(sunrgbd_results, 0)
sunrgbd_choices = np.array([2, 8, 4, 9, 1])
sunrgbd_point_cloud_result = sunrgbd_results.get('point_cloud', None)
sunrgbd_points_result = sunrgbd_results.get('points', None)
assert np.allclose(sunrgbd_point_cloud[sunrgbd_choices],
sunrgbd_point_cloud_result)
sunrgbd_points_result)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment