Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
ed115937
"git@developer.sourcefind.cn:hehl2/torchaudio.git" did not exist on "709b4439bead016bef8f3af4b68cfc3c6429af33"
Commit
ed115937
authored
Jul 05, 2022
by
VVsssssk
Committed by
ChaimZhu
Jul 20, 2022
Browse files
[Refactor]Refactor nus dataset
parent
f739803c
Changes
14
Hide whitespace changes
Inline
Side-by-side
Showing
14 changed files
with
389 additions
and
662 deletions
+389
-662
configs/_base_/datasets/nus-3d.py
configs/_base_/datasets/nus-3d.py
+50
-40
configs/_base_/models/hv_pointpillars_fpn_nus.py
configs/_base_/models/hv_pointpillars_fpn_nus.py
+7
-4
configs/_base_/schedules/schedule_2x.py
configs/_base_/schedules/schedule_2x.py
+28
-12
configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py
...pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py
+6
-0
configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py
...pillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py
+1
-1
configs/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py
...ntpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py
+6
-0
configs/pointpillars/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py
...lars/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py
+1
-1
mmdet3d/datasets/det3d_dataset.py
mmdet3d/datasets/det3d_dataset.py
+6
-2
mmdet3d/datasets/nuscenes_dataset.py
mmdet3d/datasets/nuscenes_dataset.py
+53
-585
mmdet3d/datasets/pipelines/loading.py
mmdet3d/datasets/pipelines/loading.py
+22
-17
mmdet3d/datasets/utils.py
mmdet3d/datasets/utils.py
+13
-0
tests/data/nuscenes/nus_info.pkl
tests/data/nuscenes/nus_info.pkl
+0
-0
tests/test_data/test_datasets/test_nuscenes_dataset.py
tests/test_data/test_datasets/test_nuscenes_dataset.py
+81
-0
tools/data_converter/update_infos_to_v2.py
tools/data_converter/update_infos_to_v2.py
+115
-0
No files found.
configs/_base_/datasets/nus-3d.py
View file @
ed115937
...
@@ -6,17 +6,14 @@ class_names = [
...
@@ -6,17 +6,14 @@ class_names = [
'car'
,
'truck'
,
'trailer'
,
'bus'
,
'construction_vehicle'
,
'bicycle'
,
'car'
,
'truck'
,
'trailer'
,
'bus'
,
'construction_vehicle'
,
'bicycle'
,
'motorcycle'
,
'pedestrian'
,
'traffic_cone'
,
'barrier'
'motorcycle'
,
'pedestrian'
,
'traffic_cone'
,
'barrier'
]
]
metainfo
=
dict
(
CLASSES
=
class_names
)
dataset_type
=
'NuScenesDataset'
dataset_type
=
'NuScenesDataset'
data_root
=
'data/nuscenes/'
data_root
=
'data/nuscenes/'
# Input modality for nuScenes dataset, this is consistent with the submission
# Input modality for nuScenes dataset, this is consistent with the submission
# format which requires the information in input_modality.
# format which requires the information in input_modality.
input_modality
=
dict
(
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
use_lidar
=
True
,
use_camera
=
False
,
use_radar
=
False
,
use_map
=
False
,
use_external
=
False
)
file_client_args
=
dict
(
backend
=
'disk'
)
file_client_args
=
dict
(
backend
=
'disk'
)
data_prefix
=
dict
(
pts
=
'samples/LIDAR_TOP'
,
img
=
''
)
# Uncomment the following if use ceph or other file clients.
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# for more details.
...
@@ -48,8 +45,9 @@ train_pipeline = [
...
@@ -48,8 +45,9 @@ train_pipeline = [
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectNameFilter'
,
classes
=
class_names
),
dict
(
type
=
'ObjectNameFilter'
,
classes
=
class_names
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
type
=
'Pack3DDetInputs'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
]
]
test_pipeline
=
[
test_pipeline
=
[
dict
(
dict
(
...
@@ -61,6 +59,7 @@ test_pipeline = [
...
@@ -61,6 +59,7 @@ test_pipeline = [
dict
(
dict
(
type
=
'LoadPointsFromMultiSweeps'
,
type
=
'LoadPointsFromMultiSweeps'
,
sweeps_num
=
10
,
sweeps_num
=
10
,
test_mode
=
True
,
file_client_args
=
file_client_args
),
file_client_args
=
file_client_args
),
dict
(
dict
(
type
=
'MultiScaleFlipAug3D'
,
type
=
'MultiScaleFlipAug3D'
,
...
@@ -75,13 +74,9 @@ test_pipeline = [
...
@@ -75,13 +74,9 @@ test_pipeline = [
translation_std
=
[
0
,
0
,
0
]),
translation_std
=
[
0
,
0
,
0
]),
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'RandomFlip3D'
),
dict
(
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
)
dict
(
]),
type
=
'DefaultFormatBundle3D'
,
dict
(
type
=
'Pack3DDetInputs'
,
keys
=
[
'points'
])
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
]
]
# construct a pipeline for data and gt loading in show function
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
# please keep its loading function consistent with test_pipeline (e.g. client)
...
@@ -95,48 +90,63 @@ eval_pipeline = [
...
@@ -95,48 +90,63 @@ eval_pipeline = [
dict
(
dict
(
type
=
'LoadPointsFromMultiSweeps'
,
type
=
'LoadPointsFromMultiSweeps'
,
sweeps_num
=
10
,
sweeps_num
=
10
,
test_mode
=
True
,
file_client_args
=
file_client_args
),
file_client_args
=
file_client_args
),
dict
(
dict
(
type
=
'Pack3DDetInputs'
,
keys
=
[
'points'
])
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
]
]
train_dataloader
=
dict
(
data
=
dict
(
batch_size
=
4
,
samples_per_gpu
=
4
,
num_workers
=
4
,
workers_per_gpu
=
4
,
persistent_workers
=
True
,
train
=
dict
(
sampler
=
dict
(
type
=
'DefaultSampler'
,
shuffle
=
True
),
dataset
=
dict
(
type
=
dataset_type
,
type
=
dataset_type
,
data_root
=
data_root
,
data_root
=
data_root
,
ann_file
=
data_root
+
'nuscenes_infos_train.pkl'
,
ann_file
=
'nuscenes_infos_train.pkl'
,
pipeline
=
train_pipeline
,
pipeline
=
train_pipeline
,
classes
=
class_names
,
metainfo
=
metainfo
,
modality
=
input_modality
,
modality
=
input_modality
,
test_mode
=
False
,
test_mode
=
False
,
data_prefix
=
data_prefix
,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d
=
'LiDAR'
),
box_type_3d
=
'LiDAR'
))
val
=
dict
(
test_dataloader
=
dict
(
batch_size
=
1
,
num_workers
=
1
,
persistent_workers
=
True
,
drop_last
=
False
,
sampler
=
dict
(
type
=
'DefaultSampler'
,
shuffle
=
False
),
dataset
=
dict
(
type
=
dataset_type
,
type
=
dataset_type
,
data_root
=
data_root
,
data_root
=
data_root
,
ann_file
=
data_root
+
'nuscenes_infos_val.pkl'
,
ann_file
=
'nuscenes_infos_val.pkl'
,
pipeline
=
test_pipeline
,
pipeline
=
test_pipeline
,
classes
=
class_names
,
metainfo
=
metainfo
,
modality
=
input_modality
,
modality
=
input_modality
,
data_prefix
=
data_prefix
,
test_mode
=
True
,
test_mode
=
True
,
box_type_3d
=
'LiDAR'
),
box_type_3d
=
'LiDAR'
))
test
=
dict
(
val_dataloader
=
dict
(
batch_size
=
1
,
num_workers
=
1
,
persistent_workers
=
True
,
drop_last
=
False
,
sampler
=
dict
(
type
=
'DefaultSampler'
,
shuffle
=
False
),
dataset
=
dict
(
type
=
dataset_type
,
type
=
dataset_type
,
data_root
=
data_root
,
data_root
=
data_root
,
ann_file
=
data_root
+
'nuscenes_infos_val.pkl'
,
ann_file
=
'nuscenes_infos_val.pkl'
,
pipeline
=
test_pipeline
,
pipeline
=
test_pipeline
,
classes
=
class_names
,
metainfo
=
metainfo
,
modality
=
input_modality
,
modality
=
input_modality
,
test_mode
=
True
,
test_mode
=
True
,
data_prefix
=
data_prefix
,
box_type_3d
=
'LiDAR'
))
box_type_3d
=
'LiDAR'
))
# For nuScenes dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation
val_evaluator
=
dict
(
# interval to be 24. Please change the interval accordingly if you do not
type
=
'NuScenesMetric'
,
# use a default schedule.
data_root
=
data_root
,
evaluation
=
dict
(
interval
=
24
,
pipeline
=
eval_pipeline
)
ann_file
=
data_root
+
'nuscenes_infos_val.pkl'
,
metric
=
'bbox'
)
test_evaluator
=
val_evaluator
configs/_base_/models/hv_pointpillars_fpn_nus.py
View file @
ed115937
...
@@ -6,6 +6,7 @@
...
@@ -6,6 +6,7 @@
voxel_size
=
[
0.25
,
0.25
,
8
]
voxel_size
=
[
0.25
,
0.25
,
8
]
model
=
dict
(
model
=
dict
(
type
=
'MVXFasterRCNN'
,
type
=
'MVXFasterRCNN'
,
data_preprocessor
=
dict
(
type
=
'Det3DDataPreprocessor'
),
pts_voxel_layer
=
dict
(
pts_voxel_layer
=
dict
(
max_num_points
=
64
,
max_num_points
=
64
,
point_cloud_range
=
[
-
50
,
-
50
,
-
5
,
50
,
50
,
3
],
point_cloud_range
=
[
-
50
,
-
50
,
-
5
,
50
,
50
,
3
],
...
@@ -62,19 +63,21 @@ model = dict(
...
@@ -62,19 +63,21 @@ model = dict(
dir_offset
=-
0.7854
,
# -pi / 4
dir_offset
=-
0.7854
,
# -pi / 4
bbox_coder
=
dict
(
type
=
'DeltaXYZWLHRBBoxCoder'
,
code_size
=
9
),
bbox_coder
=
dict
(
type
=
'DeltaXYZWLHRBBoxCoder'
,
code_size
=
9
),
loss_cls
=
dict
(
loss_cls
=
dict
(
type
=
'FocalLoss'
,
type
=
'
mmdet.
FocalLoss'
,
use_sigmoid
=
True
,
use_sigmoid
=
True
,
gamma
=
2.0
,
gamma
=
2.0
,
alpha
=
0.25
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'mmdet.SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
),
loss_dir
=
dict
(
loss_dir
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.2
)),
type
=
'mmdet.CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.2
)),
# model training and testing settings
# model training and testing settings
train_cfg
=
dict
(
train_cfg
=
dict
(
pts
=
dict
(
pts
=
dict
(
assigner
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
type
=
'Max
3D
IoUAssigner'
,
iou_calculator
=
dict
(
type
=
'BboxOverlapsNearest3D'
),
iou_calculator
=
dict
(
type
=
'BboxOverlapsNearest3D'
),
pos_iou_thr
=
0.6
,
pos_iou_thr
=
0.6
,
neg_iou_thr
=
0.3
,
neg_iou_thr
=
0.3
,
...
...
configs/_base_/schedules/schedule_2x.py
View file @
ed115937
# optimizer
# optimizer
# This schedule is mainly used by models on nuScenes dataset
# This schedule is mainly used by models on nuScenes dataset
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
0.001
,
weight_decay
=
0.01
)
lr
=
0.001
# max_norm=10 is better for SECOND
optim_wrapper
=
dict
(
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
type
=
'OptimWrapper'
,
lr_config
=
dict
(
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
lr
,
weight_decay
=
0.01
),
policy
=
'step'
,
# max_norm=10 is better for SECOND
warmup
=
'linear'
,
clip_grad
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
warmup_iters
=
1000
,
warmup_ratio
=
1.0
/
1000
,
# training schedule for 2x
step
=
[
20
,
23
])
train_cfg
=
dict
(
type
=
'EpochBasedTrainLoop'
,
max_epochs
=
24
,
val_interval
=
1
)
momentum_config
=
None
val_cfg
=
dict
(
type
=
'ValLoop'
)
# runtime settings
test_cfg
=
dict
(
type
=
'TestLoop'
)
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
# learning rate
param_scheduler
=
[
dict
(
type
=
'LinearLR'
,
start_factor
=
1.0
/
1000
,
by_epoch
=
False
,
begin
=
0
,
end
=
1000
),
dict
(
type
=
'MultiStepLR'
,
begin
=
0
,
end
=
24
,
by_epoch
=
True
,
milestones
=
[
20
,
23
],
gamma
=
0.1
)
]
configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py
View file @
ed115937
...
@@ -3,3 +3,9 @@ _base_ = [
...
@@ -3,3 +3,9 @@ _base_ = [
'../_base_/datasets/nus-3d.py'
,
'../_base_/schedules/schedule_2x.py'
,
'../_base_/datasets/nus-3d.py'
,
'../_base_/schedules/schedule_2x.py'
,
'../_base_/default_runtime.py'
'../_base_/default_runtime.py'
]
]
# For nuScenes dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation
# interval to be 24. Please change the interval accordingly if you do not
# use a default schedule.
train_cfg
=
dict
(
val_interval
=
24
)
configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py
View file @
ed115937
_base_
=
'./hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py'
_base_
=
'./hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py'
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
)
train_dataloader
=
dict
(
batch_size
=
2
,
num_workers
=
2
)
# fp16 settings, the loss scale is specifically tuned to avoid Nan
# fp16 settings, the loss scale is specifically tuned to avoid Nan
fp16
=
dict
(
loss_scale
=
32.
)
fp16
=
dict
(
loss_scale
=
32.
)
configs/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py
View file @
ed115937
...
@@ -40,3 +40,9 @@ model = dict(
...
@@ -40,3 +40,9 @@ model = dict(
custom_values
=
[
0
,
0
],
custom_values
=
[
0
,
0
],
rotations
=
[
0
,
1.57
],
rotations
=
[
0
,
1.57
],
reshape_out
=
True
)))
reshape_out
=
True
)))
# For nuScenes dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation
# interval to be 24. Please change the interval accordingly if you do not
# use a default schedule.
train_cfg
=
dict
(
val_interval
=
24
)
configs/pointpillars/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py
View file @
ed115937
_base_
=
'./hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py'
_base_
=
'./hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py'
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
)
train_dataloader
=
dict
(
batch_size
=
2
,
num_workers
=
2
)
# fp16 settings, the loss scale is specifically tuned to avoid Nan
# fp16 settings, the loss scale is specifically tuned to avoid Nan
fp16
=
dict
(
loss_scale
=
32.
)
fp16
=
dict
(
loss_scale
=
32.
)
mmdet3d/datasets/det3d_dataset.py
View file @
ed115937
...
@@ -227,8 +227,12 @@ class Det3DDataset(BaseDataset):
...
@@ -227,8 +227,12 @@ class Det3DDataset(BaseDataset):
if
self
.
modality
[
'use_camera'
]:
if
self
.
modality
[
'use_camera'
]:
for
cam_id
,
img_info
in
info
[
'images'
].
items
():
for
cam_id
,
img_info
in
info
[
'images'
].
items
():
if
'img_path'
in
img_info
:
if
'img_path'
in
img_info
:
img_info
[
'img_path'
]
=
osp
.
join
(
if
cam_id
in
self
.
data_prefix
:
self
.
data_prefix
.
get
(
'img'
,
''
),
img_info
[
'img_path'
])
cam_prefix
=
self
.
data_prefix
[
cam_id
]
else
:
cam_prefix
=
self
.
data_prefix
.
get
(
'img'
,
''
)
img_info
[
'img_path'
]
=
osp
.
join
(
cam_prefix
,
img_info
[
'img_path'
])
if
not
self
.
test_mode
:
if
not
self
.
test_mode
:
# used in traing
# used in traing
...
...
mmdet3d/datasets/nuscenes_dataset.py
View file @
ed115937
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) OpenMMLab. All rights reserved.
import
tempfile
from
typing
import
Dict
,
List
from
os
import
path
as
osp
import
mmcv
import
numpy
as
np
import
numpy
as
np
import
pyquaternion
from
nuscenes.utils.data_classes
import
Box
as
NuScenesBox
from
mmdet3d.registry
import
DATASETS
from
mmdet3d.registry
import
DATASETS
from
..core
import
show_result
from
..core.bbox
import
LiDARInstance3DBoxes
from
..core.bbox
import
Box3DMode
,
Coord3DMode
,
LiDARInstance3DBoxes
from
.det3d_dataset
import
Det3DDataset
from
.det3d_dataset
import
Det3DDataset
from
.pipelines
import
Compose
@
DATASETS
.
register_module
()
@
DATASETS
.
register_module
()
...
@@ -24,263 +18,94 @@ class NuScenesDataset(Det3DDataset):
...
@@ -24,263 +18,94 @@ class NuScenesDataset(Det3DDataset):
for data downloading.
for data downloading.
Args:
Args:
data_root (str): Path of dataset root.
ann_file (str): Path of annotation file.
ann_file (str): Path of annotation file.
pipeline (list[dict], optional): Pipeline used for data processing.
pipeline (list[dict], optional): Pipeline used for data processing.
Defaults to None.
Defaults to None.
data_root (str): Path of dataset root.
box_type_3d (str): Type of 3D box of this dataset.
classes (tuple[str], optional): Classes used in the dataset.
Defaults to None.
load_interval (int, optional): Interval of loading the dataset. It is
used to uniformly sample the dataset. Defaults to 1.
with_velocity (bool, optional): Whether include velocity prediction
into the experiments. Defaults to True.
modality (dict, optional): Modality to specify the sensor data used
as input. Defaults to None.
box_type_3d (str, optional): Type of 3D box of this dataset.
Based on the `box_type_3d`, the dataset will encapsulate the box
Based on the `box_type_3d`, the dataset will encapsulate the box
to its original format then converted them to `box_type_3d`.
to its original format then converted them to `box_type_3d`.
Defaults to 'LiDAR' in this dataset. Available options includes.
Defaults to 'LiDAR' in this dataset. Available options includes.
- 'LiDAR': Box in LiDAR coordinates.
- 'LiDAR': Box in LiDAR coordinates.
- 'Depth': Box in depth coordinates, usually for indoor dataset.
- 'Depth': Box in depth coordinates, usually for indoor dataset.
- 'Camera': Box in camera coordinates.
- 'Camera': Box in camera coordinates.
filter_empty_gt (bool, optional): Whether to filter empty GT.
modality (dict, optional): Modality to specify the sensor data used
as input. Defaults to dict(use_camera=False,use_lidar=True).
filter_empty_gt (bool): Whether to filter empty GT.
Defaults to True.
Defaults to True.
test_mode (bool
, optional
): Whether the dataset is in test mode.
test_mode (bool): Whether the dataset is in test mode.
Defaults to False.
Defaults to False.
eval_version (bool, optional): Configuration version of evalua
tion
.
with_velocity (bool): Whether include velocity predic
tion
Defaults to 'detection_cvpr_2019'
.
into the experiments. Defaults to True
.
use_valid_flag (bool
, optional
): Whether to use `use_valid_flag` key
use_valid_flag (bool): Whether to use `use_valid_flag` key
in the info file as mask to filter gt_boxes and gt_names.
in the info file as mask to filter gt_boxes and gt_names.
Defaults to False.
Defaults to False.
"""
"""
NameMapping
=
{
METAINFO
=
{
'movable_object.barrier'
:
'barrier'
,
'CLASSES'
:
'vehicle.bicycle'
:
'bicycle'
,
(
'car'
,
'truck'
,
'trailer'
,
'bus'
,
'construction_vehicle'
,
'bicycle'
,
'vehicle.bus.bendy'
:
'bus'
,
'motorcycle'
,
'pedestrian'
,
'traffic_cone'
,
'barrier'
),
'vehicle.bus.rigid'
:
'bus'
,
'version'
:
'vehicle.car'
:
'car'
,
'v1.0-trainval'
'vehicle.construction'
:
'construction_vehicle'
,
'vehicle.motorcycle'
:
'motorcycle'
,
'human.pedestrian.adult'
:
'pedestrian'
,
'human.pedestrian.child'
:
'pedestrian'
,
'human.pedestrian.construction_worker'
:
'pedestrian'
,
'human.pedestrian.police_officer'
:
'pedestrian'
,
'movable_object.trafficcone'
:
'traffic_cone'
,
'vehicle.trailer'
:
'trailer'
,
'vehicle.truck'
:
'truck'
}
DefaultAttribute
=
{
'car'
:
'vehicle.parked'
,
'pedestrian'
:
'pedestrian.moving'
,
'trailer'
:
'vehicle.parked'
,
'truck'
:
'vehicle.parked'
,
'bus'
:
'vehicle.moving'
,
'motorcycle'
:
'cycle.without_rider'
,
'construction_vehicle'
:
'vehicle.parked'
,
'bicycle'
:
'cycle.without_rider'
,
'barrier'
:
''
,
'traffic_cone'
:
''
,
}
AttrMapping
=
{
'cycle.with_rider'
:
0
,
'cycle.without_rider'
:
1
,
'pedestrian.moving'
:
2
,
'pedestrian.standing'
:
3
,
'pedestrian.sitting_lying_down'
:
4
,
'vehicle.moving'
:
5
,
'vehicle.parked'
:
6
,
'vehicle.stopped'
:
7
,
}
}
AttrMapping_rev
=
[
'cycle.with_rider'
,
'cycle.without_rider'
,
'pedestrian.moving'
,
'pedestrian.standing'
,
'pedestrian.sitting_lying_down'
,
'vehicle.moving'
,
'vehicle.parked'
,
'vehicle.stopped'
,
]
# https://github.com/nutonomy/nuscenes-devkit/blob/57889ff20678577025326cfc24e57424a829be0a/python-sdk/nuscenes/eval/detection/evaluate.py#L222 # noqa
ErrNameMapping
=
{
'trans_err'
:
'mATE'
,
'scale_err'
:
'mASE'
,
'orient_err'
:
'mAOE'
,
'vel_err'
:
'mAVE'
,
'attr_err'
:
'mAAE'
}
CLASSES
=
(
'car'
,
'truck'
,
'trailer'
,
'bus'
,
'construction_vehicle'
,
'bicycle'
,
'motorcycle'
,
'pedestrian'
,
'traffic_cone'
,
'barrier'
)
def
__init__
(
self
,
def
__init__
(
self
,
ann_file
,
data_root
:
str
,
pipeline
=
None
,
ann_file
:
str
,
data_root
=
None
,
pipeline
:
List
[
dict
]
=
None
,
classes
=
None
,
box_type_3d
:
str
=
'LiDAR'
,
load_interval
=
1
,
modality
:
Dict
=
dict
(
with_velocity
=
Tru
e
,
use_camera
=
Fals
e
,
modality
=
Non
e
,
use_lidar
=
Tru
e
,
box_type_3d
=
'LiDAR'
,
)
,
filter_empty_gt
=
True
,
filter_empty_gt
:
bool
=
True
,
test_mode
=
False
,
test_mode
:
bool
=
False
,
eval_version
=
'detection_cvpr_2019'
,
with_velocity
:
bool
=
True
,
use_valid_flag
=
False
):
use_valid_flag
:
bool
=
False
,
self
.
load_interval
=
load_interval
**
kwargs
):
self
.
use_valid_flag
=
use_valid_flag
self
.
use_valid_flag
=
use_valid_flag
self
.
with_velocity
=
with_velocity
assert
box_type_3d
.
lower
()
==
'lidar'
super
().
__init__
(
super
().
__init__
(
data_root
=
data_root
,
data_root
=
data_root
,
ann_file
=
ann_file
,
ann_file
=
ann_file
,
pipeline
=
pipeline
,
classes
=
classes
,
modality
=
modality
,
modality
=
modality
,
pipeline
=
pipeline
,
box_type_3d
=
box_type_3d
,
box_type_3d
=
box_type_3d
,
filter_empty_gt
=
filter_empty_gt
,
filter_empty_gt
=
filter_empty_gt
,
test_mode
=
test_mode
)
test_mode
=
test_mode
,
**
kwargs
)
self
.
with_velocity
=
with_velocity
self
.
eval_version
=
eval_version
from
nuscenes.eval.detection.config
import
config_factory
self
.
eval_detection_configs
=
config_factory
(
self
.
eval_version
)
if
self
.
modality
is
None
:
self
.
modality
=
dict
(
use_camera
=
False
,
use_lidar
=
True
,
use_radar
=
False
,
use_map
=
False
,
use_external
=
False
,
)
def
get_cat_ids
(
self
,
idx
):
"""Get category distribution of single scene.
Args:
idx (int): Index of the data_info.
Returns:
dict[list]: for each category, if the current scene
contains such boxes, store a list containing idx,
otherwise, store empty list.
"""
info
=
self
.
data_infos
[
idx
]
if
self
.
use_valid_flag
:
mask
=
info
[
'valid_flag'
]
gt_names
=
set
(
info
[
'gt_names'
][
mask
])
else
:
gt_names
=
set
(
info
[
'gt_names'
])
cat_ids
=
[]
for
name
in
gt_names
:
if
name
in
self
.
CLASSES
:
cat_ids
.
append
(
self
.
cat2id
[
name
])
return
cat_ids
def
load_annotations
(
self
,
ann_file
):
def
parse_ann_info
(
self
,
info
:
dict
)
->
dict
:
"""Load annotations from ann_file.
Args:
ann_file (str): Path of the annotation file.
Returns:
list[dict]: List of annotations sorted by timestamps.
"""
data
=
mmcv
.
load
(
ann_file
,
file_format
=
'pkl'
)
data_infos
=
list
(
sorted
(
data
[
'infos'
],
key
=
lambda
e
:
e
[
'timestamp'
]))
data_infos
=
data_infos
[::
self
.
load_interval
]
self
.
metadata
=
data
[
'metadata'
]
self
.
version
=
self
.
metadata
[
'version'
]
return
data_infos
def
get_data_info
(
self
,
index
):
"""Get data info according to the given index.
Args:
index (int): Index of the sample data to get.
Returns:
dict: Data information that will be passed to the data
preprocessing pipelines. It includes the following keys:
- sample_idx (str): Sample index.
- pts_filename (str): Filename of point clouds.
- sweeps (list[dict]): Infos of sweeps.
- timestamp (float): Sample timestamp.
- img_filename (str, optional): Image filename.
- lidar2img (list[np.ndarray], optional): Transformations
from lidar to different cameras.
- ann_info (dict): Annotation info.
"""
info
=
self
.
data_infos
[
index
]
# standard protocol modified from SECOND.Pytorch
input_dict
=
dict
(
sample_idx
=
info
[
'token'
],
pts_filename
=
info
[
'lidar_path'
],
sweeps
=
info
[
'sweeps'
],
timestamp
=
info
[
'timestamp'
]
/
1e6
,
)
if
self
.
modality
[
'use_camera'
]:
image_paths
=
[]
lidar2img_rts
=
[]
for
cam_type
,
cam_info
in
info
[
'cams'
].
items
():
image_paths
.
append
(
cam_info
[
'data_path'
])
# obtain lidar to image transformation matrix
lidar2cam_r
=
np
.
linalg
.
inv
(
cam_info
[
'sensor2lidar_rotation'
])
lidar2cam_t
=
cam_info
[
'sensor2lidar_translation'
]
@
lidar2cam_r
.
T
lidar2cam_rt
=
np
.
eye
(
4
)
lidar2cam_rt
[:
3
,
:
3
]
=
lidar2cam_r
.
T
lidar2cam_rt
[
3
,
:
3
]
=
-
lidar2cam_t
intrinsic
=
cam_info
[
'cam_intrinsic'
]
viewpad
=
np
.
eye
(
4
)
viewpad
[:
intrinsic
.
shape
[
0
],
:
intrinsic
.
shape
[
1
]]
=
intrinsic
lidar2img_rt
=
(
viewpad
@
lidar2cam_rt
.
T
)
lidar2img_rts
.
append
(
lidar2img_rt
)
input_dict
.
update
(
dict
(
img_filename
=
image_paths
,
lidar2img
=
lidar2img_rts
,
))
if
not
self
.
test_mode
:
annos
=
self
.
get_ann_info
(
index
)
input_dict
[
'ann_info'
]
=
annos
return
input_dict
def
get_ann_info
(
self
,
index
):
"""Get annotation info according to the given index.
"""Get annotation info according to the given index.
Args:
Args:
in
dex (int): Index of the annotation data to get
.
in
fo (dict): Data information of single data sample
.
Returns:
Returns:
dict:
A
nnotation information consists of the following keys:
dict:
a
nnotation information consists of the following keys:
- gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`):
- gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`):
3D ground truth bboxes
3D ground truth bboxes
.
- gt_labels_3d (np.ndarray): Labels of ground truths.
- gt_labels_3d (np.ndarray): Labels of ground truths.
- gt_names (list[str]): Class names of ground truths.
"""
"""
info
=
self
.
data_infos
[
index
]
ann_info
=
super
().
parse_ann_info
(
info
)
# filter out bbox containing no points
if
ann_info
is
None
:
# empty instance
anns_results
=
dict
()
anns_results
[
'gt_bboxes_3d'
]
=
np
.
zeros
((
0
,
7
),
dtype
=
np
.
float32
)
anns_results
[
'gt_labels_3d'
]
=
np
.
zeros
(
0
,
dtype
=
np
.
int64
)
return
anns_results
if
self
.
use_valid_flag
:
if
self
.
use_valid_flag
:
mask
=
info
[
'valid
_flag
'
]
mask
=
ann_
info
[
'
bbox_3d_is
valid'
]
else
:
else
:
mask
=
info
[
'num_lidar_pts'
]
>
0
mask
=
ann_info
[
'num_lidar_pts'
]
>
0
gt_bboxes_3d
=
info
[
'gt_boxes'
][
mask
]
gt_bboxes_3d
=
ann_info
[
'gt_bboxes_3d'
][
mask
]
gt_names_3d
=
info
[
'gt_names'
][
mask
]
gt_labels_3d
=
ann_info
[
'gt_labels_3d'
][
mask
]
gt_labels_3d
=
[]
for
cat
in
gt_names_3d
:
if
cat
in
self
.
CLASSES
:
gt_labels_3d
.
append
(
self
.
CLASSES
.
index
(
cat
))
else
:
gt_labels_3d
.
append
(
-
1
)
gt_labels_3d
=
np
.
array
(
gt_labels_3d
)
if
self
.
with_velocity
:
if
self
.
with_velocity
:
gt_velocity
=
info
[
'
gt_
velocity'
][
mask
]
gt_velocity
=
ann_
info
[
'velocity'
][
mask
]
nan_mask
=
np
.
isnan
(
gt_velocity
[:,
0
])
nan_mask
=
np
.
isnan
(
gt_velocity
[:,
0
])
gt_velocity
[
nan_mask
]
=
[
0.0
,
0.0
]
gt_velocity
[
nan_mask
]
=
[
0.0
,
0.0
]
gt_bboxes_3d
=
np
.
concatenate
([
gt_bboxes_3d
,
gt_velocity
],
axis
=-
1
)
gt_bboxes_3d
=
np
.
concatenate
([
gt_bboxes_3d
,
gt_velocity
],
axis
=-
1
)
...
@@ -293,362 +118,5 @@ class NuScenesDataset(Det3DDataset):
...
@@ -293,362 +118,5 @@ class NuScenesDataset(Det3DDataset):
origin
=
(
0.5
,
0.5
,
0.5
)).
convert_to
(
self
.
box_mode_3d
)
origin
=
(
0.5
,
0.5
,
0.5
)).
convert_to
(
self
.
box_mode_3d
)
anns_results
=
dict
(
anns_results
=
dict
(
gt_bboxes_3d
=
gt_bboxes_3d
,
gt_bboxes_3d
=
gt_bboxes_3d
,
gt_labels_3d
=
gt_labels_3d
)
gt_labels_3d
=
gt_labels_3d
,
gt_names
=
gt_names_3d
)
return
anns_results
return
anns_results
def
_format_bbox
(
self
,
results
,
jsonfile_prefix
=
None
):
"""Convert the results to the standard format.
Args:
results (list[dict]): Testing results of the dataset.
jsonfile_prefix (str): The prefix of the output jsonfile.
You can specify the output directory/filename by
modifying the jsonfile_prefix. Default: None.
Returns:
str: Path of the output json file.
"""
nusc_annos
=
{}
mapped_class_names
=
self
.
CLASSES
print
(
'Start to convert detection format...'
)
for
sample_id
,
det
in
enumerate
(
mmcv
.
track_iter_progress
(
results
)):
annos
=
[]
boxes
=
output_to_nusc_box
(
det
)
sample_token
=
self
.
data_infos
[
sample_id
][
'token'
]
boxes
=
lidar_nusc_box_to_global
(
self
.
data_infos
[
sample_id
],
boxes
,
mapped_class_names
,
self
.
eval_detection_configs
,
self
.
eval_version
)
for
i
,
box
in
enumerate
(
boxes
):
name
=
mapped_class_names
[
box
.
label
]
if
np
.
sqrt
(
box
.
velocity
[
0
]
**
2
+
box
.
velocity
[
1
]
**
2
)
>
0.2
:
if
name
in
[
'car'
,
'construction_vehicle'
,
'bus'
,
'truck'
,
'trailer'
,
]:
attr
=
'vehicle.moving'
elif
name
in
[
'bicycle'
,
'motorcycle'
]:
attr
=
'cycle.with_rider'
else
:
attr
=
NuScenesDataset
.
DefaultAttribute
[
name
]
else
:
if
name
in
[
'pedestrian'
]:
attr
=
'pedestrian.standing'
elif
name
in
[
'bus'
]:
attr
=
'vehicle.stopped'
else
:
attr
=
NuScenesDataset
.
DefaultAttribute
[
name
]
nusc_anno
=
dict
(
sample_token
=
sample_token
,
translation
=
box
.
center
.
tolist
(),
size
=
box
.
wlh
.
tolist
(),
rotation
=
box
.
orientation
.
elements
.
tolist
(),
velocity
=
box
.
velocity
[:
2
].
tolist
(),
detection_name
=
name
,
detection_score
=
box
.
score
,
attribute_name
=
attr
)
annos
.
append
(
nusc_anno
)
nusc_annos
[
sample_token
]
=
annos
nusc_submissions
=
{
'meta'
:
self
.
modality
,
'results'
:
nusc_annos
,
}
mmcv
.
mkdir_or_exist
(
jsonfile_prefix
)
res_path
=
osp
.
join
(
jsonfile_prefix
,
'results_nusc.json'
)
print
(
'Results writes to'
,
res_path
)
mmcv
.
dump
(
nusc_submissions
,
res_path
)
return
res_path
def
_evaluate_single
(
self
,
result_path
,
logger
=
None
,
metric
=
'bbox'
,
result_name
=
'pts_bbox'
):
"""Evaluation for a single model in nuScenes protocol.
Args:
result_path (str): Path of the result file.
logger (logging.Logger | str, optional): Logger used for printing
related information during evaluation. Default: None.
metric (str, optional): Metric name used for evaluation.
Default: 'bbox'.
result_name (str, optional): Result name in the metric prefix.
Default: 'pts_bbox'.
Returns:
dict: Dictionary of evaluation details.
"""
from
nuscenes
import
NuScenes
from
nuscenes.eval.detection.evaluate
import
NuScenesEval
output_dir
=
osp
.
join
(
*
osp
.
split
(
result_path
)[:
-
1
])
nusc
=
NuScenes
(
version
=
self
.
version
,
dataroot
=
self
.
data_root
,
verbose
=
False
)
eval_set_map
=
{
'v1.0-mini'
:
'mini_val'
,
'v1.0-trainval'
:
'val'
,
}
nusc_eval
=
NuScenesEval
(
nusc
,
config
=
self
.
eval_detection_configs
,
result_path
=
result_path
,
eval_set
=
eval_set_map
[
self
.
version
],
output_dir
=
output_dir
,
verbose
=
False
)
nusc_eval
.
main
(
render_curves
=
False
)
# record metrics
metrics
=
mmcv
.
load
(
osp
.
join
(
output_dir
,
'metrics_summary.json'
))
detail
=
dict
()
metric_prefix
=
f
'
{
result_name
}
_NuScenes'
for
name
in
self
.
CLASSES
:
for
k
,
v
in
metrics
[
'label_aps'
][
name
].
items
():
val
=
float
(
'{:.4f}'
.
format
(
v
))
detail
[
'{}/{}_AP_dist_{}'
.
format
(
metric_prefix
,
name
,
k
)]
=
val
for
k
,
v
in
metrics
[
'label_tp_errors'
][
name
].
items
():
val
=
float
(
'{:.4f}'
.
format
(
v
))
detail
[
'{}/{}_{}'
.
format
(
metric_prefix
,
name
,
k
)]
=
val
for
k
,
v
in
metrics
[
'tp_errors'
].
items
():
val
=
float
(
'{:.4f}'
.
format
(
v
))
detail
[
'{}/{}'
.
format
(
metric_prefix
,
self
.
ErrNameMapping
[
k
])]
=
val
detail
[
'{}/NDS'
.
format
(
metric_prefix
)]
=
metrics
[
'nd_score'
]
detail
[
'{}/mAP'
.
format
(
metric_prefix
)]
=
metrics
[
'mean_ap'
]
return
detail
def
format_results
(
self
,
results
,
jsonfile_prefix
=
None
):
"""Format the results to json (standard format for COCO evaluation).
Args:
results (list[dict]): Testing results of the dataset.
jsonfile_prefix (str): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
Returns:
tuple: Returns (result_files, tmp_dir), where `result_files` is a
dict containing the json filepaths, `tmp_dir` is the temporal
directory created for saving json files when
`jsonfile_prefix` is not specified.
"""
assert
isinstance
(
results
,
list
),
'results must be a list'
assert
len
(
results
)
==
len
(
self
),
(
'The length of results is not equal to the dataset len: {} != {}'
.
format
(
len
(
results
),
len
(
self
)))
if
jsonfile_prefix
is
None
:
tmp_dir
=
tempfile
.
TemporaryDirectory
()
jsonfile_prefix
=
osp
.
join
(
tmp_dir
.
name
,
'results'
)
else
:
tmp_dir
=
None
# currently the output prediction results could be in two formats
# 1. list of dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...)
# 2. list of dict('pts_bbox' or 'img_bbox':
# dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...))
# this is a workaround to enable evaluation of both formats on nuScenes
# refer to https://github.com/open-mmlab/mmdetection3d/issues/449
if
not
(
'pts_bbox'
in
results
[
0
]
or
'img_bbox'
in
results
[
0
]):
result_files
=
self
.
_format_bbox
(
results
,
jsonfile_prefix
)
else
:
# should take the inner dict out of 'pts_bbox' or 'img_bbox' dict
result_files
=
dict
()
for
name
in
results
[
0
]:
print
(
f
'
\n
Formating bboxes of
{
name
}
'
)
results_
=
[
out
[
name
]
for
out
in
results
]
tmp_file_
=
osp
.
join
(
jsonfile_prefix
,
name
)
result_files
.
update
(
{
name
:
self
.
_format_bbox
(
results_
,
tmp_file_
)})
return
result_files
,
tmp_dir
def
evaluate
(
self
,
results
,
metric
=
'bbox'
,
logger
=
None
,
jsonfile_prefix
=
None
,
result_names
=
[
'pts_bbox'
],
show
=
False
,
out_dir
=
None
,
pipeline
=
None
):
"""Evaluation in nuScenes protocol.
Args:
results (list[dict]): Testing results of the dataset.
metric (str | list[str], optional): Metrics to be evaluated.
Default: 'bbox'.
logger (logging.Logger | str, optional): Logger used for printing
related information during evaluation. Default: None.
jsonfile_prefix (str, optional): The prefix of json files including
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
show (bool, optional): Whether to visualize.
Default: False.
out_dir (str, optional): Path to save the visualization results.
Default: None.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
Returns:
dict[str, float]: Results of each evaluation metric.
"""
result_files
,
tmp_dir
=
self
.
format_results
(
results
,
jsonfile_prefix
)
if
isinstance
(
result_files
,
dict
):
results_dict
=
dict
()
for
name
in
result_names
:
print
(
'Evaluating bboxes of {}'
.
format
(
name
))
ret_dict
=
self
.
_evaluate_single
(
result_files
[
name
])
results_dict
.
update
(
ret_dict
)
elif
isinstance
(
result_files
,
str
):
results_dict
=
self
.
_evaluate_single
(
result_files
)
if
tmp_dir
is
not
None
:
tmp_dir
.
cleanup
()
if
show
or
out_dir
:
self
.
show
(
results
,
out_dir
,
show
=
show
,
pipeline
=
pipeline
)
return
results_dict
def
_build_default_pipeline
(
self
):
"""Build the default pipeline for this dataset."""
pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
coord_type
=
'LIDAR'
,
load_dim
=
5
,
use_dim
=
5
,
file_client_args
=
dict
(
backend
=
'disk'
)),
dict
(
type
=
'LoadPointsFromMultiSweeps'
,
sweeps_num
=
10
,
file_client_args
=
dict
(
backend
=
'disk'
)),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
self
.
CLASSES
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
]
return
Compose
(
pipeline
)
def
show
(
self
,
results
,
out_dir
,
show
=
False
,
pipeline
=
None
):
"""Results visualization.
Args:
results (list[dict]): List of bounding boxes results.
out_dir (str): Output directory of visualization result.
show (bool): Whether to visualize the results online.
Default: False.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
"""
assert
out_dir
is
not
None
,
'Expect out_dir, got none.'
pipeline
=
self
.
_get_pipeline
(
pipeline
)
for
i
,
result
in
enumerate
(
results
):
if
'pts_bbox'
in
result
.
keys
():
result
=
result
[
'pts_bbox'
]
data_info
=
self
.
data_infos
[
i
]
pts_path
=
data_info
[
'lidar_path'
]
file_name
=
osp
.
split
(
pts_path
)[
-
1
].
split
(
'.'
)[
0
]
points
=
self
.
_extract_data
(
i
,
pipeline
,
'points'
).
numpy
()
# for now we convert points into depth mode
points
=
Coord3DMode
.
convert_point
(
points
,
Coord3DMode
.
LIDAR
,
Coord3DMode
.
DEPTH
)
inds
=
result
[
'scores_3d'
]
>
0.1
gt_bboxes
=
self
.
get_ann_info
(
i
)[
'gt_bboxes_3d'
].
tensor
.
numpy
()
show_gt_bboxes
=
Box3DMode
.
convert
(
gt_bboxes
,
Box3DMode
.
LIDAR
,
Box3DMode
.
DEPTH
)
pred_bboxes
=
result
[
'boxes_3d'
][
inds
].
tensor
.
numpy
()
show_pred_bboxes
=
Box3DMode
.
convert
(
pred_bboxes
,
Box3DMode
.
LIDAR
,
Box3DMode
.
DEPTH
)
show_result
(
points
,
show_gt_bboxes
,
show_pred_bboxes
,
out_dir
,
file_name
,
show
)
def
output_to_nusc_box
(
detection
):
"""Convert the output to the box class in the nuScenes.
Args:
detection (dict): Detection results.
- boxes_3d (:obj:`BaseInstance3DBoxes`): Detection bbox.
- scores_3d (torch.Tensor): Detection scores.
- labels_3d (torch.Tensor): Predicted box labels.
Returns:
list[:obj:`NuScenesBox`]: List of standard NuScenesBoxes.
"""
box3d
=
detection
[
'boxes_3d'
]
scores
=
detection
[
'scores_3d'
].
numpy
()
labels
=
detection
[
'labels_3d'
].
numpy
()
box_gravity_center
=
box3d
.
gravity_center
.
numpy
()
box_dims
=
box3d
.
dims
.
numpy
()
box_yaw
=
box3d
.
yaw
.
numpy
()
# our LiDAR coordinate system -> nuScenes box coordinate system
nus_box_dims
=
box_dims
[:,
[
1
,
0
,
2
]]
box_list
=
[]
for
i
in
range
(
len
(
box3d
)):
quat
=
pyquaternion
.
Quaternion
(
axis
=
[
0
,
0
,
1
],
radians
=
box_yaw
[
i
])
velocity
=
(
*
box3d
.
tensor
[
i
,
7
:
9
],
0.0
)
# velo_val = np.linalg.norm(box3d[i, 7:9])
# velo_ori = box3d[i, 6]
# velocity = (
# velo_val * np.cos(velo_ori), velo_val * np.sin(velo_ori), 0.0)
box
=
NuScenesBox
(
box_gravity_center
[
i
],
nus_box_dims
[
i
],
quat
,
label
=
labels
[
i
],
score
=
scores
[
i
],
velocity
=
velocity
)
box_list
.
append
(
box
)
return
box_list
def
lidar_nusc_box_to_global
(
info
,
boxes
,
classes
,
eval_configs
,
eval_version
=
'detection_cvpr_2019'
):
"""Convert the box from ego to global coordinate.
Args:
info (dict): Info for a specific sample data, including the
calibration information.
boxes (list[:obj:`NuScenesBox`]): List of predicted NuScenesBoxes.
classes (list[str]): Mapped classes in the evaluation.
eval_configs (object): Evaluation configuration object.
eval_version (str, optional): Evaluation version.
Default: 'detection_cvpr_2019'
Returns:
list: List of standard NuScenesBoxes in the global
coordinate.
"""
box_list
=
[]
for
box
in
boxes
:
# Move box to ego vehicle coord system
box
.
rotate
(
pyquaternion
.
Quaternion
(
info
[
'lidar2ego_rotation'
]))
box
.
translate
(
np
.
array
(
info
[
'lidar2ego_translation'
]))
# filter det in ego.
cls_range_map
=
eval_configs
.
class_range
radius
=
np
.
linalg
.
norm
(
box
.
center
[:
2
],
2
)
det_range
=
cls_range_map
[
classes
[
box
.
label
]]
if
radius
>
det_range
:
continue
# Move box to global coord system
box
.
rotate
(
pyquaternion
.
Quaternion
(
info
[
'ego2global_rotation'
]))
box
.
translate
(
np
.
array
(
info
[
'ego2global_translation'
]))
box_list
.
append
(
box
)
return
box_list
mmdet3d/datasets/pipelines/loading.py
View file @
ed115937
...
@@ -101,7 +101,7 @@ class LoadImageFromFileMono3D(LoadImageFromFile):
...
@@ -101,7 +101,7 @@ class LoadImageFromFileMono3D(LoadImageFromFile):
@
TRANSFORMS
.
register_module
()
@
TRANSFORMS
.
register_module
()
class
LoadPointsFromMultiSweeps
(
object
):
class
LoadPointsFromMultiSweeps
(
BaseTransform
):
"""Load points from multiple sweeps.
"""Load points from multiple sweeps.
This is usually used for nuScenes dataset to utilize previous sweeps.
This is usually used for nuScenes dataset to utilize previous sweeps.
...
@@ -186,7 +186,7 @@ class LoadPointsFromMultiSweeps(object):
...
@@ -186,7 +186,7 @@ class LoadPointsFromMultiSweeps(object):
not_close
=
np
.
logical_not
(
np
.
logical_and
(
x_filt
,
y_filt
))
not_close
=
np
.
logical_not
(
np
.
logical_and
(
x_filt
,
y_filt
))
return
points
[
not_close
]
return
points
[
not_close
]
def
__call__
(
self
,
results
):
def
transform
(
self
,
results
):
"""Call function to load multi-sweep point clouds from files.
"""Call function to load multi-sweep point clouds from files.
Args:
Args:
...
@@ -204,30 +204,35 @@ class LoadPointsFromMultiSweeps(object):
...
@@ -204,30 +204,35 @@ class LoadPointsFromMultiSweeps(object):
points
.
tensor
[:,
4
]
=
0
points
.
tensor
[:,
4
]
=
0
sweep_points_list
=
[
points
]
sweep_points_list
=
[
points
]
ts
=
results
[
'timestamp'
]
ts
=
results
[
'timestamp'
]
if
self
.
pad_empty_sweeps
and
len
(
results
[
'sweeps'
])
==
0
:
if
'lidar_sweeps'
not
in
results
:
for
i
in
range
(
self
.
sweeps_num
):
if
self
.
pad_empty_sweeps
:
if
self
.
remove_close
:
for
i
in
range
(
self
.
sweeps_num
):
sweep_points_list
.
append
(
self
.
_remove_close
(
points
))
if
self
.
remove_close
:
else
:
sweep_points_list
.
append
(
self
.
_remove_close
(
points
))
sweep_points_list
.
append
(
points
)
else
:
sweep_points_list
.
append
(
points
)
else
:
else
:
if
len
(
results
[
'sweeps'
])
<=
self
.
sweeps_num
:
if
len
(
results
[
'
lidar_
sweeps'
])
<=
self
.
sweeps_num
:
choices
=
np
.
arange
(
len
(
results
[
'sweeps'
]))
choices
=
np
.
arange
(
len
(
results
[
'
lidar_
sweeps'
]))
elif
self
.
test_mode
:
elif
self
.
test_mode
:
choices
=
np
.
arange
(
self
.
sweeps_num
)
choices
=
np
.
arange
(
self
.
sweeps_num
)
else
:
else
:
choices
=
np
.
random
.
choice
(
choices
=
np
.
random
.
choice
(
len
(
results
[
'sweeps'
]),
self
.
sweeps_num
,
replace
=
False
)
len
(
results
[
'lidar_sweeps'
]),
self
.
sweeps_num
,
replace
=
False
)
for
idx
in
choices
:
for
idx
in
choices
:
sweep
=
results
[
'sweeps'
][
idx
]
sweep
=
results
[
'lidar_sweeps'
][
idx
]
points_sweep
=
self
.
_load_points
(
sweep
[
'data_path'
])
points_sweep
=
self
.
_load_points
(
sweep
[
'lidar_points'
][
'lidar_path'
])
points_sweep
=
np
.
copy
(
points_sweep
).
reshape
(
-
1
,
self
.
load_dim
)
points_sweep
=
np
.
copy
(
points_sweep
).
reshape
(
-
1
,
self
.
load_dim
)
if
self
.
remove_close
:
if
self
.
remove_close
:
points_sweep
=
self
.
_remove_close
(
points_sweep
)
points_sweep
=
self
.
_remove_close
(
points_sweep
)
sweep_ts
=
sweep
[
'timestamp'
]
/
1e6
# bc-breaking: Timestamp has divided 1e6 in pkl infos.
points_sweep
[:,
:
3
]
=
points_sweep
[:,
:
3
]
@
sweep
[
sweep_ts
=
sweep
[
'timestamp'
]
'sensor2lidar_rotation'
].
T
lidar2cam
=
np
.
array
(
sweep
[
'lidar_points'
][
'lidar2sensor'
])
points_sweep
[:,
:
3
]
+=
sweep
[
'sensor2lidar_translation'
]
points_sweep
[:,
:
3
]
=
points_sweep
[:,
:
3
]
@
lidar2cam
[:
3
,
:
3
]
points_sweep
[:,
:
3
]
-=
lidar2cam
[:
3
,
3
]
points_sweep
[:,
4
]
=
ts
-
sweep_ts
points_sweep
[:,
4
]
=
ts
-
sweep_ts
points_sweep
=
points
.
new_point
(
points_sweep
)
points_sweep
=
points
.
new_point
(
points_sweep
)
sweep_points_list
.
append
(
points_sweep
)
sweep_points_list
.
append
(
points_sweep
)
...
...
mmdet3d/datasets/utils.py
View file @
ed115937
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) OpenMMLab. All rights reserved.
import
mmcv
import
mmcv
import
numpy
as
np
from
mmcv.transforms
import
LoadImageFromFile
from
mmcv.transforms
import
LoadImageFromFile
from
pyquaternion
import
Quaternion
# yapf: disable
# yapf: disable
from
mmdet3d.datasets.pipelines
import
(
LoadAnnotations3D
,
from
mmdet3d.datasets.pipelines
import
(
LoadAnnotations3D
,
...
@@ -137,3 +139,14 @@ def extract_result_dict(results, key):
...
@@ -137,3 +139,14 @@ def extract_result_dict(results, key):
if
isinstance
(
data
,
mmcv
.
parallel
.
DataContainer
):
if
isinstance
(
data
,
mmcv
.
parallel
.
DataContainer
):
data
=
data
.
_data
data
=
data
.
_data
return
data
return
data
def
convert_quaternion_to_matrix
(
quaternion
:
list
,
translation
:
list
=
None
)
->
list
:
"""Compute a transform matrix by given quaternion and translation
vector."""
result
=
np
.
eye
(
4
)
result
[:
3
,
:
3
]
=
Quaternion
(
quaternion
).
rotation_matrix
if
translation
is
not
None
:
result
[:
3
,
3
]
=
np
.
array
(
translation
)
return
result
.
astype
(
np
.
float32
).
tolist
()
tests/data/nuscenes/nus_info.pkl
View file @
ed115937
No preview for this file type
tests/test_data/test_datasets/test_nuscenes_dataset.py
0 → 100644
View file @
ed115937
# Copyright (c) OpenMMLab. All rights reserved.
import
numpy
as
np
from
mmcv.transforms.base
import
BaseTransform
from
mmengine.data
import
InstanceData
from
mmengine.registry
import
TRANSFORMS
from
mmdet3d.core.bbox
import
LiDARInstance3DBoxes
from
mmdet3d.core.data_structures
import
Det3DDataSample
from
mmdet3d.datasets
import
NuScenesDataset
def
_generate_nus_dataset_config
():
data_root
=
'tests/data/nuscenes'
ann_file
=
'nus_info.pkl'
classes
=
[
'car'
,
'truck'
,
'trailer'
,
'bus'
,
'construction_vehicle'
,
'bicycle'
,
'motorcycle'
,
'pedestrian'
,
'traffic_cone'
,
'barrier'
]
if
'Identity'
not
in
TRANSFORMS
:
@
TRANSFORMS
.
register_module
()
class
Identity
(
BaseTransform
):
def
transform
(
self
,
info
):
packed_input
=
dict
(
data_sample
=
Det3DDataSample
())
if
'ann_info'
in
info
:
packed_input
[
'data_sample'
].
gt_instances_3d
=
InstanceData
(
)
packed_input
[
'data_sample'
].
gt_instances_3d
.
labels_3d
=
info
[
'ann_info'
][
'gt_labels_3d'
]
return
packed_input
pipeline
=
[
dict
(
type
=
'Identity'
),
]
modality
=
dict
(
use_lidar
=
True
,
use_camera
=
True
)
data_prefix
=
dict
(
pts
=
'samples/LIDAR_TOP'
,
img
=
'samples/CAM_BACK_LEFT'
)
return
data_root
,
ann_file
,
classes
,
data_prefix
,
pipeline
,
modality
def
test_getitem
():
np
.
random
.
seed
(
0
)
data_root
,
ann_file
,
classes
,
data_prefix
,
pipeline
,
modality
=
\
_generate_nus_dataset_config
()
nus_dataset
=
NuScenesDataset
(
data_root
,
ann_file
,
data_prefix
=
data_prefix
,
pipeline
=
pipeline
,
metainfo
=
dict
(
CLASSES
=
classes
),
modality
=
modality
)
nus_dataset
.
prepare_data
(
0
)
input_dict
=
nus_dataset
.
get_data_info
(
0
)
# assert the the path should contains data_prefix and data_root
assert
data_prefix
[
'pts'
]
in
input_dict
[
'lidar_points'
][
'lidar_path'
]
assert
input_dict
[
'lidar_points'
][
'lidar_path'
]
==
'tests/data/nuscenes/samples/LIDAR_TOP/'
\
'n015-2018-08-02-17-16-37+0800__LIDAR_TOP__'
\
'1533201470948018.pcd.bin'
for
cam_id
,
img_info
in
input_dict
[
'images'
].
items
():
if
'img_path'
in
img_info
:
assert
data_prefix
[
'img'
]
in
img_info
[
'img_path'
]
assert
data_root
in
img_info
[
'img_path'
]
ann_info
=
nus_dataset
.
parse_ann_info
(
input_dict
)
# assert the keys in ann_info and the type
assert
'gt_labels_3d'
in
ann_info
assert
ann_info
[
'gt_labels_3d'
].
dtype
==
np
.
int64
assert
len
(
ann_info
[
'gt_labels_3d'
])
==
37
assert
'gt_bboxes_3d'
in
ann_info
assert
isinstance
(
ann_info
[
'gt_bboxes_3d'
],
LiDARInstance3DBoxes
)
assert
len
(
nus_dataset
.
metainfo
[
'CLASSES'
])
==
10
assert
input_dict
[
'token'
]
==
'fd8420396768425eabec9bdddf7e64b6'
assert
input_dict
[
'timestamp'
]
==
1533201470.448696
tools/data_converter/update_infos_to_v2.py
View file @
ed115937
...
@@ -15,6 +15,8 @@ from os import path as osp
...
@@ -15,6 +15,8 @@ from os import path as osp
import
mmcv
import
mmcv
import
numpy
as
np
import
numpy
as
np
from
mmdet3d.datasets.utils
import
convert_quaternion_to_matrix
def
get_empty_instance
():
def
get_empty_instance
():
"""Empty annotation for single instance."""
"""Empty annotation for single instance."""
...
@@ -156,6 +158,7 @@ def get_empty_standard_data_info():
...
@@ -156,6 +158,7 @@ def get_empty_standard_data_info():
radar_points
=
get_empty_radar_points
(),
radar_points
=
get_empty_radar_points
(),
# (list[dict], optional): Image sweeps data.
# (list[dict], optional): Image sweeps data.
image_sweeps
=
[],
image_sweeps
=
[],
lidar_sweeps
=
[],
instances
=
[],
instances
=
[],
# (list[dict], optional): Required by object
# (list[dict], optional): Required by object
# detection, instance to be ignored during training.
# detection, instance to be ignored during training.
...
@@ -203,6 +206,116 @@ def clear_data_info_unused_keys(data_info):
...
@@ -203,6 +206,116 @@ def clear_data_info_unused_keys(data_info):
return
data_info
,
empty_flag
return
data_info
,
empty_flag
def
update_nuscenes_infos
(
pkl_path
,
out_dir
):
print
(
f
'
{
pkl_path
}
will be modified.'
)
if
out_dir
in
pkl_path
:
print
(
f
'Warning, you may overwriting '
f
'the original data
{
pkl_path
}
.'
)
print
(
f
'Reading from input file:
{
pkl_path
}
.'
)
data_list
=
mmcv
.
load
(
pkl_path
)
METAINFO
=
{
'CLASSES'
:
(
'car'
,
'truck'
,
'trailer'
,
'bus'
,
'construction_vehicle'
,
'bicycle'
,
'motorcycle'
,
'pedestrian'
,
'traffic_cone'
,
'barrier'
),
'DATASET'
:
'Nuscenes'
,
'version'
:
data_list
[
'metadata'
][
'version'
]
}
print
(
'Start updating:'
)
converted_list
=
[]
for
i
,
ori_info_dict
in
enumerate
(
mmcv
.
track_iter_progress
(
data_list
[
'infos'
])):
temp_data_info
=
get_empty_standard_data_info
()
temp_data_info
[
'sample_idx'
]
=
i
temp_data_info
[
'token'
]
=
ori_info_dict
[
'token'
]
temp_data_info
[
'ego2global'
]
=
convert_quaternion_to_matrix
(
ori_info_dict
[
'ego2global_rotation'
],
ori_info_dict
[
'ego2global_translation'
])
temp_data_info
[
'lidar_points'
][
'lidar_path'
]
=
ori_info_dict
[
'lidar_path'
].
split
(
'/'
)[
-
1
]
temp_data_info
[
'lidar_points'
][
'lidar2ego'
]
=
convert_quaternion_to_matrix
(
ori_info_dict
[
'lidar2ego_rotation'
],
ori_info_dict
[
'lidar2ego_translation'
])
# bc-breaking: Timestamp has divided 1e6 in pkl infos.
temp_data_info
[
'timestamp'
]
=
ori_info_dict
[
'timestamp'
]
/
1e6
for
ori_sweep
in
ori_info_dict
[
'sweeps'
]:
temp_lidar_sweep
=
get_single_lidar_sweep
()
temp_lidar_sweep
[
'lidar_points'
][
'lidar2ego'
]
=
convert_quaternion_to_matrix
(
ori_sweep
[
'sensor2ego_rotation'
],
ori_sweep
[
'sensor2ego_translation'
])
temp_lidar_sweep
[
'ego2global'
]
=
convert_quaternion_to_matrix
(
ori_sweep
[
'ego2global_rotation'
],
ori_sweep
[
'ego2global_translation'
])
lidar2sensor
=
np
.
eye
(
4
)
lidar2sensor
[:
3
,
:
3
]
=
ori_sweep
[
'sensor2lidar_rotation'
].
T
lidar2sensor
[:
3
,
3
]
=
-
ori_sweep
[
'sensor2lidar_translation'
]
temp_lidar_sweep
[
'lidar_points'
][
'lidar2sensor'
]
=
lidar2sensor
.
astype
(
np
.
float32
).
tolist
()
temp_lidar_sweep
[
'timestamp'
]
=
ori_sweep
[
'timestamp'
]
/
1e6
temp_lidar_sweep
[
'lidar_points'
][
'lidar_path'
]
=
ori_sweep
[
'data_path'
]
temp_lidar_sweep
[
'sample_data_token'
]
=
ori_sweep
[
'sample_data_token'
]
temp_data_info
[
'lidar_sweeps'
].
append
(
temp_lidar_sweep
)
temp_data_info
[
'images'
]
=
{}
for
cam
in
ori_info_dict
[
'cams'
]:
empty_img_info
=
get_empty_img_info
()
empty_img_info
[
'img_path'
]
=
ori_info_dict
[
'cams'
][
cam
][
'data_path'
].
split
(
'/'
)[
-
1
]
empty_img_info
[
'cam2img'
]
=
ori_info_dict
[
'cams'
][
cam
][
'cam_intrinsic'
].
tolist
()
empty_img_info
[
'sample_data_token'
]
=
ori_info_dict
[
'cams'
][
cam
][
'sample_data_token'
]
# bc-breaking: Timestamp has divided 1e6 in pkl infos.
empty_img_info
[
'timestamp'
]
=
ori_info_dict
[
'cams'
][
cam
][
'timestamp'
]
/
1e6
empty_img_info
[
'cam2ego'
]
=
convert_quaternion_to_matrix
(
ori_info_dict
[
'cams'
][
cam
][
'sensor2ego_rotation'
],
ori_info_dict
[
'cams'
][
cam
][
'sensor2ego_translation'
])
lidar2sensor
=
np
.
eye
(
4
)
lidar2sensor
[:
3
,
:
3
]
=
ori_info_dict
[
'cams'
][
cam
][
'sensor2lidar_rotation'
].
T
lidar2sensor
[:
3
,
3
]
=
-
ori_info_dict
[
'cams'
][
cam
][
'sensor2lidar_translation'
]
empty_img_info
[
'lidar2cam'
]
=
lidar2sensor
.
astype
(
np
.
float32
).
tolist
()
temp_data_info
[
'images'
][
cam
]
=
empty_img_info
num_instances
=
ori_info_dict
[
'gt_boxes'
].
shape
[
0
]
ignore_class_name
=
set
()
for
i
in
range
(
num_instances
):
empty_instance
=
get_empty_instance
()
empty_instance
[
'bbox_3d'
]
=
ori_info_dict
[
'gt_boxes'
][
i
,
:].
tolist
()
if
ori_info_dict
[
'gt_names'
][
i
]
in
METAINFO
[
'CLASSES'
]:
empty_instance
[
'bbox_label'
]
=
METAINFO
[
'CLASSES'
].
index
(
ori_info_dict
[
'gt_names'
][
i
])
else
:
ignore_class_name
.
add
(
ori_info_dict
[
'gt_names'
][
i
])
empty_instance
[
'bbox_label'
]
=
-
1
empty_instance
[
'bbox_label_3d'
]
=
copy
.
deepcopy
(
empty_instance
[
'bbox_label'
])
empty_instance
[
'velocity'
]
=
ori_info_dict
[
'gt_velocity'
][
i
,
:].
tolist
()
empty_instance
[
'num_lidar_pts'
]
=
ori_info_dict
[
'num_lidar_pts'
][
i
]
empty_instance
[
'num_radar_pts'
]
=
ori_info_dict
[
'num_radar_pts'
][
i
]
empty_instance
[
'bbox_3d_isvalid'
]
=
ori_info_dict
[
'valid_flag'
][
i
]
empty_instance
=
clear_instance_unused_keys
(
empty_instance
)
temp_data_info
[
'instances'
].
append
(
empty_instance
)
temp_data_info
,
_
=
clear_data_info_unused_keys
(
temp_data_info
)
converted_list
.
append
(
temp_data_info
)
pkl_name
=
pkl_path
.
split
(
'/'
)[
-
1
]
out_path
=
osp
.
join
(
out_dir
,
pkl_name
)
print
(
f
'Writing to output file:
{
out_path
}
.'
)
print
(
f
'ignore classes:
{
ignore_class_name
}
'
)
converted_data_info
=
dict
(
metainfo
=
METAINFO
,
data_list
=
converted_list
)
mmcv
.
dump
(
converted_data_info
,
out_path
,
'pkl'
)
return
temp_lidar_sweep
def
update_kitti_infos
(
pkl_path
,
out_dir
):
def
update_kitti_infos
(
pkl_path
,
out_dir
):
print
(
f
'
{
pkl_path
}
will be modified.'
)
print
(
f
'
{
pkl_path
}
will be modified.'
)
if
out_dir
in
pkl_path
:
if
out_dir
in
pkl_path
:
...
@@ -479,6 +592,8 @@ def main():
...
@@ -479,6 +592,8 @@ def main():
update_scannet_infos
(
pkl_path
=
args
.
pkl
,
out_dir
=
args
.
out_dir
)
update_scannet_infos
(
pkl_path
=
args
.
pkl
,
out_dir
=
args
.
out_dir
)
elif
args
.
dataset
.
lower
()
==
'sunrgbd'
:
elif
args
.
dataset
.
lower
()
==
'sunrgbd'
:
update_sunrgbd_infos
(
pkl_path
=
args
.
pkl
,
out_dir
=
args
.
out_dir
)
update_sunrgbd_infos
(
pkl_path
=
args
.
pkl
,
out_dir
=
args
.
out_dir
)
elif
args
.
dataset
.
lower
()
==
'nuscenes'
:
update_nuscenes_infos
(
pkl_path
=
args
.
pkl
,
out_dir
=
args
.
out_dir
)
else
:
else
:
raise
NotImplementedError
(
raise
NotImplementedError
(
f
'Do not support convert
{
args
.
dataset
}
to v2.'
)
f
'Do not support convert
{
args
.
dataset
}
to v2.'
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment