"git@developer.sourcefind.cn:hehl2/torchaudio.git" did not exist on "709b4439bead016bef8f3af4b68cfc3c6429af33"
Commit ed115937 authored by VVsssssk's avatar VVsssssk Committed by ChaimZhu
Browse files

[Refactor]Refactor nus dataset

parent f739803c
...@@ -6,17 +6,14 @@ class_names = [ ...@@ -6,17 +6,14 @@ class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
] ]
metainfo = dict(CLASSES=class_names)
dataset_type = 'NuScenesDataset' dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/' data_root = 'data/nuscenes/'
# Input modality for nuScenes dataset, this is consistent with the submission # Input modality for nuScenes dataset, this is consistent with the submission
# format which requires the information in input_modality. # format which requires the information in input_modality.
input_modality = dict( input_modality = dict(use_lidar=True, use_camera=False)
use_lidar=True,
use_camera=False,
use_radar=False,
use_map=False,
use_external=False)
file_client_args = dict(backend='disk') file_client_args = dict(backend='disk')
data_prefix = dict(pts='samples/LIDAR_TOP', img='')
# Uncomment the following if use ceph or other file clients. # Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient # See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details. # for more details.
...@@ -48,8 +45,9 @@ train_pipeline = [ ...@@ -48,8 +45,9 @@ train_pipeline = [
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names), dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'), dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names), dict(
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
] ]
test_pipeline = [ test_pipeline = [
dict( dict(
...@@ -61,6 +59,7 @@ test_pipeline = [ ...@@ -61,6 +59,7 @@ test_pipeline = [
dict( dict(
type='LoadPointsFromMultiSweeps', type='LoadPointsFromMultiSweeps',
sweeps_num=10, sweeps_num=10,
test_mode=True,
file_client_args=file_client_args), file_client_args=file_client_args),
dict( dict(
type='MultiScaleFlipAug3D', type='MultiScaleFlipAug3D',
...@@ -75,13 +74,9 @@ test_pipeline = [ ...@@ -75,13 +74,9 @@ test_pipeline = [
translation_std=[0, 0, 0]), translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'), dict(type='RandomFlip3D'),
dict( dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range), type='PointsRangeFilter', point_cloud_range=point_cloud_range)
dict( ]),
type='DefaultFormatBundle3D', dict(type='Pack3DDetInputs', keys=['points'])
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
])
] ]
# construct a pipeline for data and gt loading in show function # construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client) # please keep its loading function consistent with test_pipeline (e.g. client)
...@@ -95,48 +90,63 @@ eval_pipeline = [ ...@@ -95,48 +90,63 @@ eval_pipeline = [
dict( dict(
type='LoadPointsFromMultiSweeps', type='LoadPointsFromMultiSweeps',
sweeps_num=10, sweeps_num=10,
test_mode=True,
file_client_args=file_client_args), file_client_args=file_client_args),
dict( dict(type='Pack3DDetInputs', keys=['points'])
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
] ]
train_dataloader = dict(
data = dict( batch_size=4,
samples_per_gpu=4, num_workers=4,
workers_per_gpu=4, persistent_workers=True,
train=dict( sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type, type=dataset_type,
data_root=data_root, data_root=data_root,
ann_file=data_root + 'nuscenes_infos_train.pkl', ann_file='nuscenes_infos_train.pkl',
pipeline=train_pipeline, pipeline=train_pipeline,
classes=class_names, metainfo=metainfo,
modality=input_modality, modality=input_modality,
test_mode=False, test_mode=False,
data_prefix=data_prefix,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset. # and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='LiDAR'), box_type_3d='LiDAR'))
val=dict( test_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type, type=dataset_type,
data_root=data_root, data_root=data_root,
ann_file=data_root + 'nuscenes_infos_val.pkl', ann_file='nuscenes_infos_val.pkl',
pipeline=test_pipeline, pipeline=test_pipeline,
classes=class_names, metainfo=metainfo,
modality=input_modality, modality=input_modality,
data_prefix=data_prefix,
test_mode=True, test_mode=True,
box_type_3d='LiDAR'), box_type_3d='LiDAR'))
test=dict( val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type, type=dataset_type,
data_root=data_root, data_root=data_root,
ann_file=data_root + 'nuscenes_infos_val.pkl', ann_file='nuscenes_infos_val.pkl',
pipeline=test_pipeline, pipeline=test_pipeline,
classes=class_names, metainfo=metainfo,
modality=input_modality, modality=input_modality,
test_mode=True, test_mode=True,
data_prefix=data_prefix,
box_type_3d='LiDAR')) box_type_3d='LiDAR'))
# For nuScenes dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation val_evaluator = dict(
# interval to be 24. Please change the interval accordingly if you do not type='NuScenesMetric',
# use a default schedule. data_root=data_root,
evaluation = dict(interval=24, pipeline=eval_pipeline) ann_file=data_root + 'nuscenes_infos_val.pkl',
metric='bbox')
test_evaluator = val_evaluator
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
voxel_size = [0.25, 0.25, 8] voxel_size = [0.25, 0.25, 8]
model = dict( model = dict(
type='MVXFasterRCNN', type='MVXFasterRCNN',
data_preprocessor=dict(type='Det3DDataPreprocessor'),
pts_voxel_layer=dict( pts_voxel_layer=dict(
max_num_points=64, max_num_points=64,
point_cloud_range=[-50, -50, -5, 50, 50, 3], point_cloud_range=[-50, -50, -5, 50, 50, 3],
...@@ -62,19 +63,21 @@ model = dict( ...@@ -62,19 +63,21 @@ model = dict(
dir_offset=-0.7854, # -pi / 4 dir_offset=-0.7854, # -pi / 4
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=9), bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=9),
loss_cls=dict( loss_cls=dict(
type='FocalLoss', type='mmdet.FocalLoss',
use_sigmoid=True, use_sigmoid=True,
gamma=2.0, gamma=2.0,
alpha=0.25, alpha=0.25,
loss_weight=1.0), loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), loss_bbox=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_dir=dict( loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), type='mmdet.CrossEntropyLoss', use_sigmoid=False,
loss_weight=0.2)),
# model training and testing settings # model training and testing settings
train_cfg=dict( train_cfg=dict(
pts=dict( pts=dict(
assigner=dict( assigner=dict(
type='MaxIoUAssigner', type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'), iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6, pos_iou_thr=0.6,
neg_iou_thr=0.3, neg_iou_thr=0.3,
......
# optimizer # optimizer
# This schedule is mainly used by models on nuScenes dataset # This schedule is mainly used by models on nuScenes dataset
optimizer = dict(type='AdamW', lr=0.001, weight_decay=0.01) lr = 0.001
# max_norm=10 is better for SECOND optim_wrapper = dict(
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) type='OptimWrapper',
lr_config = dict( optimizer=dict(type='AdamW', lr=lr, weight_decay=0.01),
policy='step', # max_norm=10 is better for SECOND
warmup='linear', clip_grad=dict(max_norm=35, norm_type=2))
warmup_iters=1000,
warmup_ratio=1.0 / 1000, # training schedule for 2x
step=[20, 23]) train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=1)
momentum_config = None val_cfg = dict(type='ValLoop')
# runtime settings test_cfg = dict(type='TestLoop')
runner = dict(type='EpochBasedRunner', max_epochs=24)
# learning rate
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0 / 1000,
by_epoch=False,
begin=0,
end=1000),
dict(
type='MultiStepLR',
begin=0,
end=24,
by_epoch=True,
milestones=[20, 23],
gamma=0.1)
]
...@@ -3,3 +3,9 @@ _base_ = [ ...@@ -3,3 +3,9 @@ _base_ = [
'../_base_/datasets/nus-3d.py', '../_base_/schedules/schedule_2x.py', '../_base_/datasets/nus-3d.py', '../_base_/schedules/schedule_2x.py',
'../_base_/default_runtime.py' '../_base_/default_runtime.py'
] ]
# For nuScenes dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation
# interval to be 24. Please change the interval accordingly if you do not
# use a default schedule.
train_cfg = dict(val_interval=24)
_base_ = './hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py' _base_ = './hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py'
data = dict(samples_per_gpu=2, workers_per_gpu=2) train_dataloader = dict(batch_size=2, num_workers=2)
# fp16 settings, the loss scale is specifically tuned to avoid Nan # fp16 settings, the loss scale is specifically tuned to avoid Nan
fp16 = dict(loss_scale=32.) fp16 = dict(loss_scale=32.)
...@@ -40,3 +40,9 @@ model = dict( ...@@ -40,3 +40,9 @@ model = dict(
custom_values=[0, 0], custom_values=[0, 0],
rotations=[0, 1.57], rotations=[0, 1.57],
reshape_out=True))) reshape_out=True)))
# For nuScenes dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation
# interval to be 24. Please change the interval accordingly if you do not
# use a default schedule.
train_cfg = dict(val_interval=24)
_base_ = './hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py' _base_ = './hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py'
data = dict(samples_per_gpu=2, workers_per_gpu=2) train_dataloader = dict(batch_size=2, num_workers=2)
# fp16 settings, the loss scale is specifically tuned to avoid Nan # fp16 settings, the loss scale is specifically tuned to avoid Nan
fp16 = dict(loss_scale=32.) fp16 = dict(loss_scale=32.)
...@@ -227,8 +227,12 @@ class Det3DDataset(BaseDataset): ...@@ -227,8 +227,12 @@ class Det3DDataset(BaseDataset):
if self.modality['use_camera']: if self.modality['use_camera']:
for cam_id, img_info in info['images'].items(): for cam_id, img_info in info['images'].items():
if 'img_path' in img_info: if 'img_path' in img_info:
img_info['img_path'] = osp.join( if cam_id in self.data_prefix:
self.data_prefix.get('img', ''), img_info['img_path']) cam_prefix = self.data_prefix[cam_id]
else:
cam_prefix = self.data_prefix.get('img', '')
img_info['img_path'] = osp.join(cam_prefix,
img_info['img_path'])
if not self.test_mode: if not self.test_mode:
# used in traing # used in traing
......
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) OpenMMLab. All rights reserved.
import tempfile from typing import Dict, List
from os import path as osp
import mmcv
import numpy as np import numpy as np
import pyquaternion
from nuscenes.utils.data_classes import Box as NuScenesBox
from mmdet3d.registry import DATASETS from mmdet3d.registry import DATASETS
from ..core import show_result from ..core.bbox import LiDARInstance3DBoxes
from ..core.bbox import Box3DMode, Coord3DMode, LiDARInstance3DBoxes
from .det3d_dataset import Det3DDataset from .det3d_dataset import Det3DDataset
from .pipelines import Compose
@DATASETS.register_module() @DATASETS.register_module()
...@@ -24,263 +18,94 @@ class NuScenesDataset(Det3DDataset): ...@@ -24,263 +18,94 @@ class NuScenesDataset(Det3DDataset):
for data downloading. for data downloading.
Args: Args:
data_root (str): Path of dataset root.
ann_file (str): Path of annotation file. ann_file (str): Path of annotation file.
pipeline (list[dict], optional): Pipeline used for data processing. pipeline (list[dict], optional): Pipeline used for data processing.
Defaults to None. Defaults to None.
data_root (str): Path of dataset root. box_type_3d (str): Type of 3D box of this dataset.
classes (tuple[str], optional): Classes used in the dataset.
Defaults to None.
load_interval (int, optional): Interval of loading the dataset. It is
used to uniformly sample the dataset. Defaults to 1.
with_velocity (bool, optional): Whether include velocity prediction
into the experiments. Defaults to True.
modality (dict, optional): Modality to specify the sensor data used
as input. Defaults to None.
box_type_3d (str, optional): Type of 3D box of this dataset.
Based on the `box_type_3d`, the dataset will encapsulate the box Based on the `box_type_3d`, the dataset will encapsulate the box
to its original format then converted them to `box_type_3d`. to its original format then converted them to `box_type_3d`.
Defaults to 'LiDAR' in this dataset. Available options includes. Defaults to 'LiDAR' in this dataset. Available options includes.
- 'LiDAR': Box in LiDAR coordinates. - 'LiDAR': Box in LiDAR coordinates.
- 'Depth': Box in depth coordinates, usually for indoor dataset. - 'Depth': Box in depth coordinates, usually for indoor dataset.
- 'Camera': Box in camera coordinates. - 'Camera': Box in camera coordinates.
filter_empty_gt (bool, optional): Whether to filter empty GT. modality (dict, optional): Modality to specify the sensor data used
as input. Defaults to dict(use_camera=False,use_lidar=True).
filter_empty_gt (bool): Whether to filter empty GT.
Defaults to True. Defaults to True.
test_mode (bool, optional): Whether the dataset is in test mode. test_mode (bool): Whether the dataset is in test mode.
Defaults to False. Defaults to False.
eval_version (bool, optional): Configuration version of evaluation. with_velocity (bool): Whether include velocity prediction
Defaults to 'detection_cvpr_2019'. into the experiments. Defaults to True.
use_valid_flag (bool, optional): Whether to use `use_valid_flag` key use_valid_flag (bool): Whether to use `use_valid_flag` key
in the info file as mask to filter gt_boxes and gt_names. in the info file as mask to filter gt_boxes and gt_names.
Defaults to False. Defaults to False.
""" """
NameMapping = { METAINFO = {
'movable_object.barrier': 'barrier', 'CLASSES':
'vehicle.bicycle': 'bicycle', ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'vehicle.bus.bendy': 'bus', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'),
'vehicle.bus.rigid': 'bus', 'version':
'vehicle.car': 'car', 'v1.0-trainval'
'vehicle.construction': 'construction_vehicle',
'vehicle.motorcycle': 'motorcycle',
'human.pedestrian.adult': 'pedestrian',
'human.pedestrian.child': 'pedestrian',
'human.pedestrian.construction_worker': 'pedestrian',
'human.pedestrian.police_officer': 'pedestrian',
'movable_object.trafficcone': 'traffic_cone',
'vehicle.trailer': 'trailer',
'vehicle.truck': 'truck'
}
DefaultAttribute = {
'car': 'vehicle.parked',
'pedestrian': 'pedestrian.moving',
'trailer': 'vehicle.parked',
'truck': 'vehicle.parked',
'bus': 'vehicle.moving',
'motorcycle': 'cycle.without_rider',
'construction_vehicle': 'vehicle.parked',
'bicycle': 'cycle.without_rider',
'barrier': '',
'traffic_cone': '',
}
AttrMapping = {
'cycle.with_rider': 0,
'cycle.without_rider': 1,
'pedestrian.moving': 2,
'pedestrian.standing': 3,
'pedestrian.sitting_lying_down': 4,
'vehicle.moving': 5,
'vehicle.parked': 6,
'vehicle.stopped': 7,
} }
AttrMapping_rev = [
'cycle.with_rider',
'cycle.without_rider',
'pedestrian.moving',
'pedestrian.standing',
'pedestrian.sitting_lying_down',
'vehicle.moving',
'vehicle.parked',
'vehicle.stopped',
]
# https://github.com/nutonomy/nuscenes-devkit/blob/57889ff20678577025326cfc24e57424a829be0a/python-sdk/nuscenes/eval/detection/evaluate.py#L222 # noqa
ErrNameMapping = {
'trans_err': 'mATE',
'scale_err': 'mASE',
'orient_err': 'mAOE',
'vel_err': 'mAVE',
'attr_err': 'mAAE'
}
CLASSES = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
'barrier')
def __init__(self, def __init__(self,
ann_file, data_root: str,
pipeline=None, ann_file: str,
data_root=None, pipeline: List[dict] = None,
classes=None, box_type_3d: str = 'LiDAR',
load_interval=1, modality: Dict = dict(
with_velocity=True, use_camera=False,
modality=None, use_lidar=True,
box_type_3d='LiDAR', ),
filter_empty_gt=True, filter_empty_gt: bool = True,
test_mode=False, test_mode: bool = False,
eval_version='detection_cvpr_2019', with_velocity: bool = True,
use_valid_flag=False): use_valid_flag: bool = False,
self.load_interval = load_interval **kwargs):
self.use_valid_flag = use_valid_flag self.use_valid_flag = use_valid_flag
self.with_velocity = with_velocity
assert box_type_3d.lower() == 'lidar'
super().__init__( super().__init__(
data_root=data_root, data_root=data_root,
ann_file=ann_file, ann_file=ann_file,
pipeline=pipeline,
classes=classes,
modality=modality, modality=modality,
pipeline=pipeline,
box_type_3d=box_type_3d, box_type_3d=box_type_3d,
filter_empty_gt=filter_empty_gt, filter_empty_gt=filter_empty_gt,
test_mode=test_mode) test_mode=test_mode,
**kwargs)
self.with_velocity = with_velocity
self.eval_version = eval_version
from nuscenes.eval.detection.config import config_factory
self.eval_detection_configs = config_factory(self.eval_version)
if self.modality is None:
self.modality = dict(
use_camera=False,
use_lidar=True,
use_radar=False,
use_map=False,
use_external=False,
)
def get_cat_ids(self, idx):
"""Get category distribution of single scene.
Args:
idx (int): Index of the data_info.
Returns:
dict[list]: for each category, if the current scene
contains such boxes, store a list containing idx,
otherwise, store empty list.
"""
info = self.data_infos[idx]
if self.use_valid_flag:
mask = info['valid_flag']
gt_names = set(info['gt_names'][mask])
else:
gt_names = set(info['gt_names'])
cat_ids = []
for name in gt_names:
if name in self.CLASSES:
cat_ids.append(self.cat2id[name])
return cat_ids
def load_annotations(self, ann_file): def parse_ann_info(self, info: dict) -> dict:
"""Load annotations from ann_file.
Args:
ann_file (str): Path of the annotation file.
Returns:
list[dict]: List of annotations sorted by timestamps.
"""
data = mmcv.load(ann_file, file_format='pkl')
data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp']))
data_infos = data_infos[::self.load_interval]
self.metadata = data['metadata']
self.version = self.metadata['version']
return data_infos
def get_data_info(self, index):
"""Get data info according to the given index.
Args:
index (int): Index of the sample data to get.
Returns:
dict: Data information that will be passed to the data
preprocessing pipelines. It includes the following keys:
- sample_idx (str): Sample index.
- pts_filename (str): Filename of point clouds.
- sweeps (list[dict]): Infos of sweeps.
- timestamp (float): Sample timestamp.
- img_filename (str, optional): Image filename.
- lidar2img (list[np.ndarray], optional): Transformations
from lidar to different cameras.
- ann_info (dict): Annotation info.
"""
info = self.data_infos[index]
# standard protocol modified from SECOND.Pytorch
input_dict = dict(
sample_idx=info['token'],
pts_filename=info['lidar_path'],
sweeps=info['sweeps'],
timestamp=info['timestamp'] / 1e6,
)
if self.modality['use_camera']:
image_paths = []
lidar2img_rts = []
for cam_type, cam_info in info['cams'].items():
image_paths.append(cam_info['data_path'])
# obtain lidar to image transformation matrix
lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation'])
lidar2cam_t = cam_info[
'sensor2lidar_translation'] @ lidar2cam_r.T
lidar2cam_rt = np.eye(4)
lidar2cam_rt[:3, :3] = lidar2cam_r.T
lidar2cam_rt[3, :3] = -lidar2cam_t
intrinsic = cam_info['cam_intrinsic']
viewpad = np.eye(4)
viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic
lidar2img_rt = (viewpad @ lidar2cam_rt.T)
lidar2img_rts.append(lidar2img_rt)
input_dict.update(
dict(
img_filename=image_paths,
lidar2img=lidar2img_rts,
))
if not self.test_mode:
annos = self.get_ann_info(index)
input_dict['ann_info'] = annos
return input_dict
def get_ann_info(self, index):
"""Get annotation info according to the given index. """Get annotation info according to the given index.
Args: Args:
index (int): Index of the annotation data to get. info (dict): Data information of single data sample.
Returns: Returns:
dict: Annotation information consists of the following keys: dict: annotation information consists of the following keys:
- gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`):
3D ground truth bboxes 3D ground truth bboxes.
- gt_labels_3d (np.ndarray): Labels of ground truths. - gt_labels_3d (np.ndarray): Labels of ground truths.
- gt_names (list[str]): Class names of ground truths.
""" """
info = self.data_infos[index] ann_info = super().parse_ann_info(info)
# filter out bbox containing no points if ann_info is None:
# empty instance
anns_results = dict()
anns_results['gt_bboxes_3d'] = np.zeros((0, 7), dtype=np.float32)
anns_results['gt_labels_3d'] = np.zeros(0, dtype=np.int64)
return anns_results
if self.use_valid_flag: if self.use_valid_flag:
mask = info['valid_flag'] mask = ann_info['bbox_3d_isvalid']
else: else:
mask = info['num_lidar_pts'] > 0 mask = ann_info['num_lidar_pts'] > 0
gt_bboxes_3d = info['gt_boxes'][mask] gt_bboxes_3d = ann_info['gt_bboxes_3d'][mask]
gt_names_3d = info['gt_names'][mask] gt_labels_3d = ann_info['gt_labels_3d'][mask]
gt_labels_3d = []
for cat in gt_names_3d:
if cat in self.CLASSES:
gt_labels_3d.append(self.CLASSES.index(cat))
else:
gt_labels_3d.append(-1)
gt_labels_3d = np.array(gt_labels_3d)
if self.with_velocity: if self.with_velocity:
gt_velocity = info['gt_velocity'][mask] gt_velocity = ann_info['velocity'][mask]
nan_mask = np.isnan(gt_velocity[:, 0]) nan_mask = np.isnan(gt_velocity[:, 0])
gt_velocity[nan_mask] = [0.0, 0.0] gt_velocity[nan_mask] = [0.0, 0.0]
gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_velocity], axis=-1) gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_velocity], axis=-1)
...@@ -293,362 +118,5 @@ class NuScenesDataset(Det3DDataset): ...@@ -293,362 +118,5 @@ class NuScenesDataset(Det3DDataset):
origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d) origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
anns_results = dict( anns_results = dict(
gt_bboxes_3d=gt_bboxes_3d, gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels_3d)
gt_labels_3d=gt_labels_3d,
gt_names=gt_names_3d)
return anns_results return anns_results
def _format_bbox(self, results, jsonfile_prefix=None):
"""Convert the results to the standard format.
Args:
results (list[dict]): Testing results of the dataset.
jsonfile_prefix (str): The prefix of the output jsonfile.
You can specify the output directory/filename by
modifying the jsonfile_prefix. Default: None.
Returns:
str: Path of the output json file.
"""
nusc_annos = {}
mapped_class_names = self.CLASSES
print('Start to convert detection format...')
for sample_id, det in enumerate(mmcv.track_iter_progress(results)):
annos = []
boxes = output_to_nusc_box(det)
sample_token = self.data_infos[sample_id]['token']
boxes = lidar_nusc_box_to_global(self.data_infos[sample_id], boxes,
mapped_class_names,
self.eval_detection_configs,
self.eval_version)
for i, box in enumerate(boxes):
name = mapped_class_names[box.label]
if np.sqrt(box.velocity[0]**2 + box.velocity[1]**2) > 0.2:
if name in [
'car',
'construction_vehicle',
'bus',
'truck',
'trailer',
]:
attr = 'vehicle.moving'
elif name in ['bicycle', 'motorcycle']:
attr = 'cycle.with_rider'
else:
attr = NuScenesDataset.DefaultAttribute[name]
else:
if name in ['pedestrian']:
attr = 'pedestrian.standing'
elif name in ['bus']:
attr = 'vehicle.stopped'
else:
attr = NuScenesDataset.DefaultAttribute[name]
nusc_anno = dict(
sample_token=sample_token,
translation=box.center.tolist(),
size=box.wlh.tolist(),
rotation=box.orientation.elements.tolist(),
velocity=box.velocity[:2].tolist(),
detection_name=name,
detection_score=box.score,
attribute_name=attr)
annos.append(nusc_anno)
nusc_annos[sample_token] = annos
nusc_submissions = {
'meta': self.modality,
'results': nusc_annos,
}
mmcv.mkdir_or_exist(jsonfile_prefix)
res_path = osp.join(jsonfile_prefix, 'results_nusc.json')
print('Results writes to', res_path)
mmcv.dump(nusc_submissions, res_path)
return res_path
def _evaluate_single(self,
result_path,
logger=None,
metric='bbox',
result_name='pts_bbox'):
"""Evaluation for a single model in nuScenes protocol.
Args:
result_path (str): Path of the result file.
logger (logging.Logger | str, optional): Logger used for printing
related information during evaluation. Default: None.
metric (str, optional): Metric name used for evaluation.
Default: 'bbox'.
result_name (str, optional): Result name in the metric prefix.
Default: 'pts_bbox'.
Returns:
dict: Dictionary of evaluation details.
"""
from nuscenes import NuScenes
from nuscenes.eval.detection.evaluate import NuScenesEval
output_dir = osp.join(*osp.split(result_path)[:-1])
nusc = NuScenes(
version=self.version, dataroot=self.data_root, verbose=False)
eval_set_map = {
'v1.0-mini': 'mini_val',
'v1.0-trainval': 'val',
}
nusc_eval = NuScenesEval(
nusc,
config=self.eval_detection_configs,
result_path=result_path,
eval_set=eval_set_map[self.version],
output_dir=output_dir,
verbose=False)
nusc_eval.main(render_curves=False)
# record metrics
metrics = mmcv.load(osp.join(output_dir, 'metrics_summary.json'))
detail = dict()
metric_prefix = f'{result_name}_NuScenes'
for name in self.CLASSES:
for k, v in metrics['label_aps'][name].items():
val = float('{:.4f}'.format(v))
detail['{}/{}_AP_dist_{}'.format(metric_prefix, name, k)] = val
for k, v in metrics['label_tp_errors'][name].items():
val = float('{:.4f}'.format(v))
detail['{}/{}_{}'.format(metric_prefix, name, k)] = val
for k, v in metrics['tp_errors'].items():
val = float('{:.4f}'.format(v))
detail['{}/{}'.format(metric_prefix,
self.ErrNameMapping[k])] = val
detail['{}/NDS'.format(metric_prefix)] = metrics['nd_score']
detail['{}/mAP'.format(metric_prefix)] = metrics['mean_ap']
return detail
def format_results(self, results, jsonfile_prefix=None):
"""Format the results to json (standard format for COCO evaluation).
Args:
results (list[dict]): Testing results of the dataset.
jsonfile_prefix (str): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
Returns:
tuple: Returns (result_files, tmp_dir), where `result_files` is a
dict containing the json filepaths, `tmp_dir` is the temporal
directory created for saving json files when
`jsonfile_prefix` is not specified.
"""
assert isinstance(results, list), 'results must be a list'
assert len(results) == len(self), (
'The length of results is not equal to the dataset len: {} != {}'.
format(len(results), len(self)))
if jsonfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
jsonfile_prefix = osp.join(tmp_dir.name, 'results')
else:
tmp_dir = None
# currently the output prediction results could be in two formats
# 1. list of dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...)
# 2. list of dict('pts_bbox' or 'img_bbox':
# dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...))
# this is a workaround to enable evaluation of both formats on nuScenes
# refer to https://github.com/open-mmlab/mmdetection3d/issues/449
if not ('pts_bbox' in results[0] or 'img_bbox' in results[0]):
result_files = self._format_bbox(results, jsonfile_prefix)
else:
# should take the inner dict out of 'pts_bbox' or 'img_bbox' dict
result_files = dict()
for name in results[0]:
print(f'\nFormating bboxes of {name}')
results_ = [out[name] for out in results]
tmp_file_ = osp.join(jsonfile_prefix, name)
result_files.update(
{name: self._format_bbox(results_, tmp_file_)})
return result_files, tmp_dir
def evaluate(self,
results,
metric='bbox',
logger=None,
jsonfile_prefix=None,
result_names=['pts_bbox'],
show=False,
out_dir=None,
pipeline=None):
"""Evaluation in nuScenes protocol.
Args:
results (list[dict]): Testing results of the dataset.
metric (str | list[str], optional): Metrics to be evaluated.
Default: 'bbox'.
logger (logging.Logger | str, optional): Logger used for printing
related information during evaluation. Default: None.
jsonfile_prefix (str, optional): The prefix of json files including
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
show (bool, optional): Whether to visualize.
Default: False.
out_dir (str, optional): Path to save the visualization results.
Default: None.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
Returns:
dict[str, float]: Results of each evaluation metric.
"""
result_files, tmp_dir = self.format_results(results, jsonfile_prefix)
if isinstance(result_files, dict):
results_dict = dict()
for name in result_names:
print('Evaluating bboxes of {}'.format(name))
ret_dict = self._evaluate_single(result_files[name])
results_dict.update(ret_dict)
elif isinstance(result_files, str):
results_dict = self._evaluate_single(result_files)
if tmp_dir is not None:
tmp_dir.cleanup()
if show or out_dir:
self.show(results, out_dir, show=show, pipeline=pipeline)
return results_dict
def _build_default_pipeline(self):
"""Build the default pipeline for this dataset."""
pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
file_client_args=dict(backend='disk')),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
file_client_args=dict(backend='disk')),
dict(
type='DefaultFormatBundle3D',
class_names=self.CLASSES,
with_label=False),
dict(type='Collect3D', keys=['points'])
]
return Compose(pipeline)
def show(self, results, out_dir, show=False, pipeline=None):
"""Results visualization.
Args:
results (list[dict]): List of bounding boxes results.
out_dir (str): Output directory of visualization result.
show (bool): Whether to visualize the results online.
Default: False.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
"""
assert out_dir is not None, 'Expect out_dir, got none.'
pipeline = self._get_pipeline(pipeline)
for i, result in enumerate(results):
if 'pts_bbox' in result.keys():
result = result['pts_bbox']
data_info = self.data_infos[i]
pts_path = data_info['lidar_path']
file_name = osp.split(pts_path)[-1].split('.')[0]
points = self._extract_data(i, pipeline, 'points').numpy()
# for now we convert points into depth mode
points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR,
Coord3DMode.DEPTH)
inds = result['scores_3d'] > 0.1
gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
Box3DMode.DEPTH)
pred_bboxes = result['boxes_3d'][inds].tensor.numpy()
show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
Box3DMode.DEPTH)
show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir,
file_name, show)
def output_to_nusc_box(detection):
"""Convert the output to the box class in the nuScenes.
Args:
detection (dict): Detection results.
- boxes_3d (:obj:`BaseInstance3DBoxes`): Detection bbox.
- scores_3d (torch.Tensor): Detection scores.
- labels_3d (torch.Tensor): Predicted box labels.
Returns:
list[:obj:`NuScenesBox`]: List of standard NuScenesBoxes.
"""
box3d = detection['boxes_3d']
scores = detection['scores_3d'].numpy()
labels = detection['labels_3d'].numpy()
box_gravity_center = box3d.gravity_center.numpy()
box_dims = box3d.dims.numpy()
box_yaw = box3d.yaw.numpy()
# our LiDAR coordinate system -> nuScenes box coordinate system
nus_box_dims = box_dims[:, [1, 0, 2]]
box_list = []
for i in range(len(box3d)):
quat = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
velocity = (*box3d.tensor[i, 7:9], 0.0)
# velo_val = np.linalg.norm(box3d[i, 7:9])
# velo_ori = box3d[i, 6]
# velocity = (
# velo_val * np.cos(velo_ori), velo_val * np.sin(velo_ori), 0.0)
box = NuScenesBox(
box_gravity_center[i],
nus_box_dims[i],
quat,
label=labels[i],
score=scores[i],
velocity=velocity)
box_list.append(box)
return box_list
def lidar_nusc_box_to_global(info,
boxes,
classes,
eval_configs,
eval_version='detection_cvpr_2019'):
"""Convert the box from ego to global coordinate.
Args:
info (dict): Info for a specific sample data, including the
calibration information.
boxes (list[:obj:`NuScenesBox`]): List of predicted NuScenesBoxes.
classes (list[str]): Mapped classes in the evaluation.
eval_configs (object): Evaluation configuration object.
eval_version (str, optional): Evaluation version.
Default: 'detection_cvpr_2019'
Returns:
list: List of standard NuScenesBoxes in the global
coordinate.
"""
box_list = []
for box in boxes:
# Move box to ego vehicle coord system
box.rotate(pyquaternion.Quaternion(info['lidar2ego_rotation']))
box.translate(np.array(info['lidar2ego_translation']))
# filter det in ego.
cls_range_map = eval_configs.class_range
radius = np.linalg.norm(box.center[:2], 2)
det_range = cls_range_map[classes[box.label]]
if radius > det_range:
continue
# Move box to global coord system
box.rotate(pyquaternion.Quaternion(info['ego2global_rotation']))
box.translate(np.array(info['ego2global_translation']))
box_list.append(box)
return box_list
...@@ -101,7 +101,7 @@ class LoadImageFromFileMono3D(LoadImageFromFile): ...@@ -101,7 +101,7 @@ class LoadImageFromFileMono3D(LoadImageFromFile):
@TRANSFORMS.register_module() @TRANSFORMS.register_module()
class LoadPointsFromMultiSweeps(object): class LoadPointsFromMultiSweeps(BaseTransform):
"""Load points from multiple sweeps. """Load points from multiple sweeps.
This is usually used for nuScenes dataset to utilize previous sweeps. This is usually used for nuScenes dataset to utilize previous sweeps.
...@@ -186,7 +186,7 @@ class LoadPointsFromMultiSweeps(object): ...@@ -186,7 +186,7 @@ class LoadPointsFromMultiSweeps(object):
not_close = np.logical_not(np.logical_and(x_filt, y_filt)) not_close = np.logical_not(np.logical_and(x_filt, y_filt))
return points[not_close] return points[not_close]
def __call__(self, results): def transform(self, results):
"""Call function to load multi-sweep point clouds from files. """Call function to load multi-sweep point clouds from files.
Args: Args:
...@@ -204,30 +204,35 @@ class LoadPointsFromMultiSweeps(object): ...@@ -204,30 +204,35 @@ class LoadPointsFromMultiSweeps(object):
points.tensor[:, 4] = 0 points.tensor[:, 4] = 0
sweep_points_list = [points] sweep_points_list = [points]
ts = results['timestamp'] ts = results['timestamp']
if self.pad_empty_sweeps and len(results['sweeps']) == 0: if 'lidar_sweeps' not in results:
for i in range(self.sweeps_num): if self.pad_empty_sweeps:
if self.remove_close: for i in range(self.sweeps_num):
sweep_points_list.append(self._remove_close(points)) if self.remove_close:
else: sweep_points_list.append(self._remove_close(points))
sweep_points_list.append(points) else:
sweep_points_list.append(points)
else: else:
if len(results['sweeps']) <= self.sweeps_num: if len(results['lidar_sweeps']) <= self.sweeps_num:
choices = np.arange(len(results['sweeps'])) choices = np.arange(len(results['lidar_sweeps']))
elif self.test_mode: elif self.test_mode:
choices = np.arange(self.sweeps_num) choices = np.arange(self.sweeps_num)
else: else:
choices = np.random.choice( choices = np.random.choice(
len(results['sweeps']), self.sweeps_num, replace=False) len(results['lidar_sweeps']),
self.sweeps_num,
replace=False)
for idx in choices: for idx in choices:
sweep = results['sweeps'][idx] sweep = results['lidar_sweeps'][idx]
points_sweep = self._load_points(sweep['data_path']) points_sweep = self._load_points(
sweep['lidar_points']['lidar_path'])
points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim) points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
if self.remove_close: if self.remove_close:
points_sweep = self._remove_close(points_sweep) points_sweep = self._remove_close(points_sweep)
sweep_ts = sweep['timestamp'] / 1e6 # bc-breaking: Timestamp has divided 1e6 in pkl infos.
points_sweep[:, :3] = points_sweep[:, :3] @ sweep[ sweep_ts = sweep['timestamp']
'sensor2lidar_rotation'].T lidar2cam = np.array(sweep['lidar_points']['lidar2sensor'])
points_sweep[:, :3] += sweep['sensor2lidar_translation'] points_sweep[:, :3] = points_sweep[:, :3] @ lidar2cam[:3, :3]
points_sweep[:, :3] -= lidar2cam[:3, 3]
points_sweep[:, 4] = ts - sweep_ts points_sweep[:, 4] = ts - sweep_ts
points_sweep = points.new_point(points_sweep) points_sweep = points.new_point(points_sweep)
sweep_points_list.append(points_sweep) sweep_points_list.append(points_sweep)
......
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) OpenMMLab. All rights reserved.
import mmcv import mmcv
import numpy as np
from mmcv.transforms import LoadImageFromFile from mmcv.transforms import LoadImageFromFile
from pyquaternion import Quaternion
# yapf: disable # yapf: disable
from mmdet3d.datasets.pipelines import (LoadAnnotations3D, from mmdet3d.datasets.pipelines import (LoadAnnotations3D,
...@@ -137,3 +139,14 @@ def extract_result_dict(results, key): ...@@ -137,3 +139,14 @@ def extract_result_dict(results, key):
if isinstance(data, mmcv.parallel.DataContainer): if isinstance(data, mmcv.parallel.DataContainer):
data = data._data data = data._data
return data return data
def convert_quaternion_to_matrix(quaternion: list,
translation: list = None) -> list:
"""Compute a transform matrix by given quaternion and translation
vector."""
result = np.eye(4)
result[:3, :3] = Quaternion(quaternion).rotation_matrix
if translation is not None:
result[:3, 3] = np.array(translation)
return result.astype(np.float32).tolist()
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
from mmcv.transforms.base import BaseTransform
from mmengine.data import InstanceData
from mmengine.registry import TRANSFORMS
from mmdet3d.core.bbox import LiDARInstance3DBoxes
from mmdet3d.core.data_structures import Det3DDataSample
from mmdet3d.datasets import NuScenesDataset
def _generate_nus_dataset_config():
data_root = 'tests/data/nuscenes'
ann_file = 'nus_info.pkl'
classes = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
if 'Identity' not in TRANSFORMS:
@TRANSFORMS.register_module()
class Identity(BaseTransform):
def transform(self, info):
packed_input = dict(data_sample=Det3DDataSample())
if 'ann_info' in info:
packed_input['data_sample'].gt_instances_3d = InstanceData(
)
packed_input[
'data_sample'].gt_instances_3d.labels_3d = info[
'ann_info']['gt_labels_3d']
return packed_input
pipeline = [
dict(type='Identity'),
]
modality = dict(use_lidar=True, use_camera=True)
data_prefix = dict(pts='samples/LIDAR_TOP', img='samples/CAM_BACK_LEFT')
return data_root, ann_file, classes, data_prefix, pipeline, modality
def test_getitem():
np.random.seed(0)
data_root, ann_file, classes, data_prefix, pipeline, modality = \
_generate_nus_dataset_config()
nus_dataset = NuScenesDataset(
data_root,
ann_file,
data_prefix=data_prefix,
pipeline=pipeline,
metainfo=dict(CLASSES=classes),
modality=modality)
nus_dataset.prepare_data(0)
input_dict = nus_dataset.get_data_info(0)
# assert the the path should contains data_prefix and data_root
assert data_prefix['pts'] in input_dict['lidar_points']['lidar_path']
assert input_dict['lidar_points'][
'lidar_path'] == 'tests/data/nuscenes/samples/LIDAR_TOP/' \
'n015-2018-08-02-17-16-37+0800__LIDAR_TOP__' \
'1533201470948018.pcd.bin'
for cam_id, img_info in input_dict['images'].items():
if 'img_path' in img_info:
assert data_prefix['img'] in img_info['img_path']
assert data_root in img_info['img_path']
ann_info = nus_dataset.parse_ann_info(input_dict)
# assert the keys in ann_info and the type
assert 'gt_labels_3d' in ann_info
assert ann_info['gt_labels_3d'].dtype == np.int64
assert len(ann_info['gt_labels_3d']) == 37
assert 'gt_bboxes_3d' in ann_info
assert isinstance(ann_info['gt_bboxes_3d'], LiDARInstance3DBoxes)
assert len(nus_dataset.metainfo['CLASSES']) == 10
assert input_dict['token'] == 'fd8420396768425eabec9bdddf7e64b6'
assert input_dict['timestamp'] == 1533201470.448696
...@@ -15,6 +15,8 @@ from os import path as osp ...@@ -15,6 +15,8 @@ from os import path as osp
import mmcv import mmcv
import numpy as np import numpy as np
from mmdet3d.datasets.utils import convert_quaternion_to_matrix
def get_empty_instance(): def get_empty_instance():
"""Empty annotation for single instance.""" """Empty annotation for single instance."""
...@@ -156,6 +158,7 @@ def get_empty_standard_data_info(): ...@@ -156,6 +158,7 @@ def get_empty_standard_data_info():
radar_points=get_empty_radar_points(), radar_points=get_empty_radar_points(),
# (list[dict], optional): Image sweeps data. # (list[dict], optional): Image sweeps data.
image_sweeps=[], image_sweeps=[],
lidar_sweeps=[],
instances=[], instances=[],
# (list[dict], optional): Required by object # (list[dict], optional): Required by object
# detection, instance to be ignored during training. # detection, instance to be ignored during training.
...@@ -203,6 +206,116 @@ def clear_data_info_unused_keys(data_info): ...@@ -203,6 +206,116 @@ def clear_data_info_unused_keys(data_info):
return data_info, empty_flag return data_info, empty_flag
def update_nuscenes_infos(pkl_path, out_dir):
print(f'{pkl_path} will be modified.')
if out_dir in pkl_path:
print(f'Warning, you may overwriting '
f'the original data {pkl_path}.')
print(f'Reading from input file: {pkl_path}.')
data_list = mmcv.load(pkl_path)
METAINFO = {
'CLASSES':
('car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'),
'DATASET':
'Nuscenes',
'version':
data_list['metadata']['version']
}
print('Start updating:')
converted_list = []
for i, ori_info_dict in enumerate(
mmcv.track_iter_progress(data_list['infos'])):
temp_data_info = get_empty_standard_data_info()
temp_data_info['sample_idx'] = i
temp_data_info['token'] = ori_info_dict['token']
temp_data_info['ego2global'] = convert_quaternion_to_matrix(
ori_info_dict['ego2global_rotation'],
ori_info_dict['ego2global_translation'])
temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
'lidar_path'].split('/')[-1]
temp_data_info['lidar_points'][
'lidar2ego'] = convert_quaternion_to_matrix(
ori_info_dict['lidar2ego_rotation'],
ori_info_dict['lidar2ego_translation'])
# bc-breaking: Timestamp has divided 1e6 in pkl infos.
temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
for ori_sweep in ori_info_dict['sweeps']:
temp_lidar_sweep = get_single_lidar_sweep()
temp_lidar_sweep['lidar_points'][
'lidar2ego'] = convert_quaternion_to_matrix(
ori_sweep['sensor2ego_rotation'],
ori_sweep['sensor2ego_translation'])
temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
ori_sweep['ego2global_rotation'],
ori_sweep['ego2global_translation'])
lidar2sensor = np.eye(4)
lidar2sensor[:3, :3] = ori_sweep['sensor2lidar_rotation'].T
lidar2sensor[:3, 3] = -ori_sweep['sensor2lidar_translation']
temp_lidar_sweep['lidar_points'][
'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
'data_path']
temp_lidar_sweep['sample_data_token'] = ori_sweep[
'sample_data_token']
temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
temp_data_info['images'] = {}
for cam in ori_info_dict['cams']:
empty_img_info = get_empty_img_info()
empty_img_info['img_path'] = ori_info_dict['cams'][cam][
'data_path'].split('/')[-1]
empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
'cam_intrinsic'].tolist()
empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
'sample_data_token']
# bc-breaking: Timestamp has divided 1e6 in pkl infos.
empty_img_info[
'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
ori_info_dict['cams'][cam]['sensor2ego_rotation'],
ori_info_dict['cams'][cam]['sensor2ego_translation'])
lidar2sensor = np.eye(4)
lidar2sensor[:3, :3] = ori_info_dict['cams'][cam][
'sensor2lidar_rotation'].T
lidar2sensor[:3, 3] = -ori_info_dict['cams'][cam][
'sensor2lidar_translation']
empty_img_info['lidar2cam'] = lidar2sensor.astype(
np.float32).tolist()
temp_data_info['images'][cam] = empty_img_info
num_instances = ori_info_dict['gt_boxes'].shape[0]
ignore_class_name = set()
for i in range(num_instances):
empty_instance = get_empty_instance()
empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
i, :].tolist()
if ori_info_dict['gt_names'][i] in METAINFO['CLASSES']:
empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
ori_info_dict['gt_names'][i])
else:
ignore_class_name.add(ori_info_dict['gt_names'][i])
empty_instance['bbox_label'] = -1
empty_instance['bbox_label_3d'] = copy.deepcopy(
empty_instance['bbox_label'])
empty_instance['velocity'] = ori_info_dict['gt_velocity'][
i, :].tolist()
empty_instance['num_lidar_pts'] = ori_info_dict['num_lidar_pts'][i]
empty_instance['num_radar_pts'] = ori_info_dict['num_radar_pts'][i]
empty_instance['bbox_3d_isvalid'] = ori_info_dict['valid_flag'][i]
empty_instance = clear_instance_unused_keys(empty_instance)
temp_data_info['instances'].append(empty_instance)
temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
converted_list.append(temp_data_info)
pkl_name = pkl_path.split('/')[-1]
out_path = osp.join(out_dir, pkl_name)
print(f'Writing to output file: {out_path}.')
print(f'ignore classes: {ignore_class_name}')
converted_data_info = dict(metainfo=METAINFO, data_list=converted_list)
mmcv.dump(converted_data_info, out_path, 'pkl')
return temp_lidar_sweep
def update_kitti_infos(pkl_path, out_dir): def update_kitti_infos(pkl_path, out_dir):
print(f'{pkl_path} will be modified.') print(f'{pkl_path} will be modified.')
if out_dir in pkl_path: if out_dir in pkl_path:
...@@ -479,6 +592,8 @@ def main(): ...@@ -479,6 +592,8 @@ def main():
update_scannet_infos(pkl_path=args.pkl, out_dir=args.out_dir) update_scannet_infos(pkl_path=args.pkl, out_dir=args.out_dir)
elif args.dataset.lower() == 'sunrgbd': elif args.dataset.lower() == 'sunrgbd':
update_sunrgbd_infos(pkl_path=args.pkl, out_dir=args.out_dir) update_sunrgbd_infos(pkl_path=args.pkl, out_dir=args.out_dir)
elif args.dataset.lower() == 'nuscenes':
update_nuscenes_infos(pkl_path=args.pkl, out_dir=args.out_dir)
else: else:
raise NotImplementedError( raise NotImplementedError(
f'Do not support convert {args.dataset} to v2.') f'Do not support convert {args.dataset} to v2.')
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment