Unverified Commit df505feb authored by Wenhao Wu's avatar Wenhao Wu Committed by GitHub
Browse files

Fix nonzero warning (#330)

* fix nonzero warning with as_tuple

* fix nonzero warning with as_tuple #320
parent ccd3047a
...@@ -8,7 +8,7 @@ Welcome to MMDetection3D's documentation! ...@@ -8,7 +8,7 @@ Welcome to MMDetection3D's documentation!
getting_started.md getting_started.md
model_zoo.md model_zoo.md
data_preparation.md data_preparation.md
.. toctree:: .. toctree::
:maxdepth: 2 :maxdepth: 2
:caption: Quick Run :caption: Quick Run
......
...@@ -225,7 +225,8 @@ class Anchor3DHead(nn.Module, AnchorTrainMixin): ...@@ -225,7 +225,8 @@ class Anchor3DHead(nn.Module, AnchorTrainMixin):
bg_class_ind = self.num_classes bg_class_ind = self.num_classes
pos_inds = ((labels >= 0) pos_inds = ((labels >= 0)
& (labels < bg_class_ind)).nonzero().reshape(-1) & (labels < bg_class_ind)).nonzero(
as_tuple=False).reshape(-1)
num_pos = len(pos_inds) num_pos = len(pos_inds)
pos_bbox_pred = bbox_pred[pos_inds] pos_bbox_pred = bbox_pred[pos_inds]
......
...@@ -519,7 +519,8 @@ class SSD3DHead(VoteHead): ...@@ -519,7 +519,8 @@ class SSD3DHead(VoteHead):
# filter empty boxes and boxes with low score # filter empty boxes and boxes with low score
scores_mask = (obj_scores >= self.test_cfg.score_thr) scores_mask = (obj_scores >= self.test_cfg.score_thr)
nonempty_box_inds = torch.nonzero(nonempty_box_mask).flatten() nonempty_box_inds = torch.nonzero(
nonempty_box_mask, as_tuple=False).flatten()
nonempty_mask = torch.zeros_like(bbox_classes).scatter( nonempty_mask = torch.zeros_like(bbox_classes).scatter(
0, nonempty_box_inds[nms_selected], 1) 0, nonempty_box_inds[nms_selected], 1)
selected = (nonempty_mask.bool() & scores_mask.bool()) selected = (nonempty_mask.bool() & scores_mask.bool())
......
...@@ -277,11 +277,11 @@ class AnchorTrainMixin(object): ...@@ -277,11 +277,11 @@ class AnchorTrainMixin(object):
neg_inds = sampling_result.neg_inds neg_inds = sampling_result.neg_inds
else: else:
pos_inds = torch.nonzero( pos_inds = torch.nonzero(
anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) > 0 anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) > 0,
).squeeze(-1).unique() as_tuple=False).squeeze(-1).unique()
neg_inds = torch.nonzero( neg_inds = torch.nonzero(
anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) == anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) == 0,
0).squeeze(-1).unique() as_tuple=False).squeeze(-1).unique()
if gt_labels is not None: if gt_labels is not None:
labels += num_classes labels += num_classes
......
...@@ -525,7 +525,8 @@ class H3DBboxHead(nn.Module): ...@@ -525,7 +525,8 @@ class H3DBboxHead(nn.Module):
# filter empty boxes and boxes with low score # filter empty boxes and boxes with low score
scores_mask = (obj_scores > self.test_cfg.score_thr) scores_mask = (obj_scores > self.test_cfg.score_thr)
nonempty_box_inds = torch.nonzero(nonempty_box_mask).flatten() nonempty_box_inds = torch.nonzero(
nonempty_box_mask, as_tuple=False).flatten()
nonempty_mask = torch.zeros_like(bbox_classes).scatter( nonempty_mask = torch.zeros_like(bbox_classes).scatter(
0, nonempty_box_inds[nms_selected], 1) 0, nonempty_box_inds[nms_selected], 1)
selected = (nonempty_mask.bool() & scores_mask.bool()) selected = (nonempty_mask.bool() & scores_mask.bool())
......
...@@ -369,7 +369,7 @@ class PrimitiveHead(nn.Module): ...@@ -369,7 +369,7 @@ class PrimitiveHead(nn.Module):
pts_instance_mask[background_mask] = gt_labels_3d.shape[0] pts_instance_mask[background_mask] = gt_labels_3d.shape[0]
instance_flag = torch.nonzero( instance_flag = torch.nonzero(
pts_semantic_mask != self.num_classes).squeeze(1) pts_semantic_mask != self.num_classes, as_tuple=False).squeeze(1)
instance_labels = pts_instance_mask[instance_flag].unique() instance_labels = pts_instance_mask[instance_flag].unique()
with_yaw = gt_bboxes_3d.with_yaw with_yaw = gt_bboxes_3d.with_yaw
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment