Unverified Commit d7067e44 authored by Wenwei Zhang's avatar Wenwei Zhang Committed by GitHub
Browse files

Bump version to v1.1.0rc2

Bump to v1.1.0rc2
parents 28fe73d2 fb0e57e5
......@@ -3,12 +3,12 @@ dataset_type = 'ScanNetDataset'
data_root = 'data/scannet/'
metainfo = dict(
CLASSES=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
classes=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin'))
file_client_args = dict(backend='disk')
# file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
......
......@@ -3,7 +3,7 @@ class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
'bathtub', 'otherfurniture')
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
dataset_type = 'ScanNetSegDataset'
data_root = 'data/scannet/'
input_modality = dict(use_lidar=True, use_camera=False)
......
......@@ -3,7 +3,7 @@ data_root = 'data/sunrgbd/'
class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
'night_stand', 'bookshelf', 'bathtub')
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
......
......@@ -16,7 +16,7 @@ file_client_args = dict(backend='disk')
# })
class_names = ['Car', 'Pedestrian', 'Cyclist']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4]
input_modality = dict(use_lidar=True, use_camera=False)
......@@ -151,7 +151,8 @@ val_evaluator = dict(
ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
waymo_bin_file='./data/waymo/waymo_format/gt.bin',
data_root='./data/waymo/waymo_format',
file_client_args=file_client_args)
file_client_args=file_client_args,
convert_kitti_format=False)
test_evaluator = val_evaluator
vis_backends = [dict(type='LocalVisBackend')]
......
......@@ -11,7 +11,7 @@ file_client_args = dict(backend='disk')
# backend='petrel', path_mapping=dict(data='s3://waymo_data/'))
class_names = ['Car']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4]
input_modality = dict(use_lidar=True, use_camera=False)
......@@ -135,7 +135,8 @@ val_evaluator = dict(
type='WaymoMetric',
ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
waymo_bin_file='./data/waymo/waymo_format/gt.bin',
data_root='./data/waymo/waymo_format')
data_root='./data/waymo/waymo_format',
convert_kitti_format=False)
test_evaluator = val_evaluator
vis_backends = [dict(type='LocalVisBackend')]
......
# dataset settings
# D3 in the config name means the whole dataset is divided into 3 folds
# We only use one fold for efficient experiments
dataset_type = 'WaymoDataset'
data_root = 'data/waymo/kitti_format/'
class_names = ['Car', 'Pedestrian', 'Cyclist']
input_modality = dict(use_lidar=False, use_camera=True)
file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
train_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=False,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
# base shape (1248, 832), scale (0.95, 1.05)
dict(
type='RandomResize3D',
scale=(1284, 832),
ratio_range=(0.95, 1.05),
keep_ratio=True,
),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='Pack3DDetInputs',
keys=[
'img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_bboxes_3d',
'gt_labels_3d', 'centers_2d', 'depths'
]),
]
test_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='RandomResize3D',
scale=(1248, 832),
ratio_range=(1., 1.),
keep_ratio=True),
dict(type='Pack3DDetInputs', keys=['img']),
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='RandomResize3D',
scale=(1248, 832),
ratio_range=(1., 1.),
keep_ratio=True),
dict(type='Pack3DDetInputs', keys=['img']),
]
metainfo = dict(CLASSES=class_names)
train_dataloader = dict(
batch_size=3,
num_workers=3,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='waymo_infos_train.pkl',
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_RIGHT='training/image_1',
CAM_FRONT_LEFT='training/image_2',
CAM_SIDE_RIGHT='training/image_3',
CAM_SIDE_LEFT='training/image_4'),
pipeline=train_pipeline,
modality=input_modality,
test_mode=False,
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='fov_image_based',
# load one frame every three frames
load_interval=5))
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_RIGHT='training/image_1',
CAM_FRONT_LEFT='training/image_2',
CAM_SIDE_RIGHT='training/image_3',
CAM_SIDE_LEFT='training/image_4'),
ann_file='waymo_infos_val.pkl',
pipeline=eval_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='fov_image_based',
))
test_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_RIGHT='training/image_1',
CAM_FRONT_LEFT='training/image_2',
CAM_SIDE_RIGHT='training/image_3',
CAM_SIDE_LEFT='training/image_4'),
ann_file='waymo_infos_val.pkl',
pipeline=eval_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='fov_image_based',
))
val_evaluator = dict(
type='WaymoMetric',
ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
waymo_bin_file='./data/waymo/waymo_format/fov_gt.bin',
data_root='./data/waymo/waymo_format',
metric='LET_mAP',
load_type='fov_image_based',
)
test_evaluator = val_evaluator
......@@ -56,7 +56,7 @@ eval_pipeline = [
dict(type='Pack3DDetInputs', keys=['img']),
]
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
train_dataloader = dict(
batch_size=3,
......@@ -81,7 +81,7 @@ train_dataloader = dict(
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
task='mono3d',
load_type='mv_image_based',
# load one frame every three frames
load_interval=5))
......@@ -109,7 +109,7 @@ val_dataloader = dict(
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
task='mono3d',
load_type='mv_image_based',
))
test_dataloader = dict(
......@@ -136,7 +136,7 @@ test_dataloader = dict(
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
task='mono3d',
load_type='mv_image_based',
))
val_evaluator = dict(
......@@ -145,5 +145,6 @@ val_evaluator = dict(
waymo_bin_file='./data/waymo/waymo_format/cam_gt.bin',
data_root='./data/waymo/waymo_format',
metric='LET_mAP',
task='mono3d')
load_type='mv_image_based',
)
test_evaluator = val_evaluator
......@@ -62,7 +62,7 @@ eval_pipeline = [
dict(type='MultiViewWrapper', transforms=test_transforms),
dict(type='Pack3DDetInputs', keys=['img'])
]
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
train_dataloader = dict(
batch_size=2,
......
......@@ -2,6 +2,7 @@
model = dict(
type='CascadeRCNN',
pretrained='torchvision://resnet50',
_scope_='mmdet',
backbone=dict(
type='ResNet',
depth=50,
......
model = dict(
type='MinkSingleStage3DDetector',
data_preprocessor=dict(type='Det3DDataPreprocessor'),
backbone=dict(type='MinkResNet', in_channels=3, depth=34),
bbox_head=dict(
type='FCAF3DHead',
in_channels=(64, 128, 256, 512),
out_channels=128,
voxel_size=.01,
pts_prune_threshold=100000,
pts_assign_threshold=27,
pts_center_threshold=18,
num_classes=18,
num_reg_outs=6,
center_loss=dict(type='mmdet.CrossEntropyLoss', use_sigmoid=True),
bbox_loss=dict(type='AxisAlignedIoULoss'),
cls_loss=dict(type='mmdet.FocalLoss'),
),
train_cfg=dict(),
test_cfg=dict(nms_pre=1000, iou_thr=.5, score_thr=.01))
......@@ -63,9 +63,9 @@ model = dict(
# model training and testing settings
train_cfg=dict(
_scope_='mmdet',
img_rpn=dict(
assigner=dict(
_scope_='mmdet',
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
......@@ -73,7 +73,7 @@ model = dict(
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='mmdet.RandomSampler',
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
......@@ -90,7 +90,6 @@ model = dict(
min_bbox_size=0),
img_rcnn=dict(
assigner=dict(
_scope_='mmdet',
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
......@@ -98,7 +97,7 @@ model = dict(
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='mmdet.RandomSampler',
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
......
......@@ -2,6 +2,7 @@
model = dict(
type='MaskRCNN',
pretrained='torchvision://resnet50',
_scope_='mmdet',
backbone=dict(
type='ResNet',
depth=50,
......
......@@ -16,8 +16,8 @@ param_scheduler = [
]
# runtime settings
train_cfg = dict(by_epoch=True, max_epochs=100)
val_cfg = dict(interval=1)
train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# Default setting for scaling LR automatically
......
......@@ -16,8 +16,8 @@ param_scheduler = [
]
# runtime settings
train_cfg = dict(by_epoch=True, max_epochs=150)
val_cfg = dict(interval=1)
train_cfg = dict(by_epoch=True, max_epochs=150, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# Default setting for scaling LR automatically
......
......@@ -16,8 +16,8 @@ param_scheduler = [
]
# runtime settings
train_cfg = dict(by_epoch=True, max_epochs=200)
val_cfg = dict(interval=1)
train_cfg = dict(by_epoch=True, max_epochs=200, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# Default setting for scaling LR automatically
......
......@@ -16,8 +16,8 @@ param_scheduler = [
]
# runtime settings
train_cfg = dict(by_epoch=True, max_epochs=50)
val_cfg = dict(interval=1)
train_cfg = dict(by_epoch=True, max_epochs=50, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# Default setting for scaling LR automatically
......
......@@ -210,7 +210,7 @@ model = dict(
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict(
data_root=data_root,
......
......@@ -81,7 +81,7 @@ model = dict(
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict(
data_root=data_root,
......
......@@ -107,7 +107,7 @@ model = dict(
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict(
......
......@@ -99,7 +99,7 @@ model = dict(
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict(
data_root=data_root,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment