"tools/vscode:/vscode.git/clone" did not exist on "d1aac35d68a203955a32bca4635429f620fc08dd"
Commit bd20e7b6 authored by liyinhao's avatar liyinhao
Browse files

Merge branch 'master_tmp' into indoor_dataset

parents 92018ce1 535344de
......@@ -16,7 +16,7 @@ before_script:
.linting_template: &linting_template_def
stage: linting
script:
- pip install flake8 yapf isort
- pip install flake8==3.7.9 yapf isort
- flake8 .
- isort -rc --check-only --diff mmdet3d/ tools/ tests/
- yapf -r -d mmdet3d/ tools/ tests/ configs/
......@@ -26,6 +26,7 @@ before_script:
script:
- echo "Start building..."
- pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
- pip install git+https://github.com/open-mmlab/mmcv.git
- pip install git+https://github.com/open-mmlab/mmdetection.git
- python -c "import mmdet; print(mmdet.__version__)"
- pip install -v -e .[all]
......
......@@ -57,13 +57,13 @@ model = dict(
in_channels=256,
layer_nums=[5, 5],
layer_strides=[1, 2],
num_filters=[128, 256],
out_channels=[128, 256],
),
pts_neck=dict(
type='SECONDFPN',
in_channels=[128, 256],
upsample_strides=[1, 2],
num_upsample_filters=[256, 256],
out_channels=[256, 256],
),
pts_bbox_head=dict(
type='SECONDHead',
......
......@@ -28,13 +28,13 @@ model = dict(
in_channels=64,
layer_nums=[3, 5, 5],
layer_strides=[2, 2, 2],
num_filters=[64, 128, 256],
out_channels=[64, 128, 256],
),
neck=dict(
type='SECONDFPN',
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
num_upsample_filters=[128, 128, 128],
out_channels=[128, 128, 128],
),
bbox_head=dict(
type='SECONDHead',
......
......@@ -26,13 +26,13 @@ model = dict(
in_channels=256,
layer_nums=[5, 5],
layer_strides=[1, 2],
num_filters=[128, 256],
out_channels=[128, 256],
),
neck=dict(
type='SECONDFPN',
in_channels=[128, 256],
upsample_strides=[1, 2],
num_upsample_filters=[256, 256],
out_channels=[256, 256],
),
bbox_head=dict(
type='SECONDHead',
......
......@@ -26,13 +26,13 @@ model = dict(
in_channels=256,
layer_nums=[5, 5],
layer_strides=[1, 2],
num_filters=[128, 256],
out_channels=[128, 256],
),
neck=dict(
type='SECONDFPN',
in_channels=[128, 256],
upsample_strides=[1, 2],
num_upsample_filters=[256, 256],
out_channels=[256, 256],
),
bbox_head=dict(
type='SECONDHead',
......
......@@ -22,12 +22,12 @@ model = dict(
in_channels=256,
layer_nums=[5, 5],
layer_strides=[1, 2],
num_filters=[128, 256]),
out_channels=[128, 256]),
neck=dict(
type='SECONDFPN',
in_channels=[128, 256],
upsample_strides=[1, 2],
num_upsample_filters=[256, 256]),
out_channels=[256, 256]),
rpn_head=dict(
type='PartA2RPNHead',
class_name=['Pedestrian', 'Cyclist', 'Car'],
......
......@@ -27,13 +27,13 @@ model = dict(
in_channels=64,
layer_nums=[3, 5, 5],
layer_strides=[2, 2, 2],
num_filters=[64, 128, 256],
out_channels=[64, 128, 256],
),
neck=dict(
type='SECONDFPN',
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
num_upsample_filters=[128, 128, 128],
out_channels=[128, 128, 128],
),
bbox_head=dict(
type='SECONDHead',
......
......@@ -26,13 +26,13 @@ model = dict(
in_channels=256,
layer_nums=[5, 5],
layer_strides=[1, 2],
num_filters=[128, 256],
out_channels=[128, 256],
),
neck=dict(
type='SECONDFPN',
in_channels=[128, 256],
upsample_strides=[1, 2],
num_upsample_filters=[256, 256],
out_channels=[256, 256],
),
bbox_head=dict(
type='SECONDHead',
......
......@@ -34,14 +34,14 @@ model = dict(
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
layer_nums=[3, 5, 5],
layer_strides=[2, 2, 2],
num_filters=[64, 128, 256],
out_channels=[64, 128, 256],
),
pts_neck=dict(
type='SECONDFPN',
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
num_upsample_filters=[128, 128, 128],
out_channels=[128, 128, 128],
),
pts_bbox_head=dict(
type='Anchor3DVeloHead',
......
......@@ -40,7 +40,8 @@ class DefaultFormatBundle(object):
results['img'] = DC(to_tensor(img), stack=True)
for key in [
'proposals', 'gt_bboxes', 'gt_bboxes_3d', 'gt_bboxes_ignore',
'gt_labels', 'gt_labels_3d'
'gt_labels', 'gt_labels_3d', 'pts_instance_mask',
'pts_semantic_mask'
]:
if key not in results:
continue
......
......@@ -133,7 +133,7 @@ class IndoorGlobalRotScale(object):
def __init__(self, use_height=True, rot_range=None, scale_range=None):
self.use_height = use_height
self.rot_range = rot_range
self.rot_range = np.pi * np.array(rot_range)
self.scale_range = scale_range
def _rotz(self, t):
......
......@@ -92,8 +92,8 @@ class IndoorLoadAnnotations3D(object):
mmcv.check_file_exist(pts_instance_mask_path)
mmcv.check_file_exist(pts_semantic_mask_path)
pts_instance_mask = np.load(pts_instance_mask_path)
pts_semantic_mask = np.load(pts_semantic_mask_path)
pts_instance_mask = np.load(pts_instance_mask_path).astype(np.int)
pts_semantic_mask = np.load(pts_semantic_mask_path).astype(np.int)
results['pts_instance_mask'] = pts_instance_mask
results['pts_semantic_mask'] = pts_semantic_mask
......
from functools import partial
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmcv.runner import load_checkpoint
from mmdet.models import BACKBONES
class Empty(nn.Module):
def __init__(self, *args, **kwargs):
super(Empty, self).__init__()
def forward(self, *args, **kwargs):
if len(args) == 1:
return args[0]
elif len(args) == 0:
return None
return args
@BACKBONES.register_module()
class SECOND(nn.Module):
"""Compare with RPN, RPNV2 support arbitrary number of stage.
"""Backbone network for SECOND/PointPillars/PartA2/MVXNet
Args:
in_channels (int): Input channels
out_channels (list[int]): Output channels for multi-scale feature maps
layer_nums (list[int]): Number of layers in each stage
layer_strides (list[int]): Strides of each stage
norm_cfg (dict): Config dict of normalization layers
conv_cfg (dict): Config dict of convolutional layers
"""
def __init__(self,
in_channels=128,
out_channels=[128, 128, 256],
layer_nums=[3, 5, 5],
layer_strides=[2, 2, 2],
num_filters=[128, 128, 256],
norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01)):
norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01),
conv_cfg=dict(type='Conv2d', bias=False)):
super(SECOND, self).__init__()
assert len(layer_strides) == len(layer_nums)
assert len(num_filters) == len(layer_nums)
if norm_cfg is not None:
Conv2d = partial(nn.Conv2d, bias=False)
else:
Conv2d = partial(nn.Conv2d, bias=True)
assert len(out_channels) == len(layer_nums)
in_filters = [in_channels, *num_filters[:-1]]
in_filters = [in_channels, *out_channels[:-1]]
# note that when stride > 1, conv2d with same padding isn't
# equal to pad-conv2d. we should use pad-conv2d.
blocks = []
for i, layer_num in enumerate(layer_nums):
norm_layer = (
build_norm_layer(norm_cfg, num_filters[i])[1]
if norm_cfg is not None else Empty)
block = [
nn.ZeroPad2d(1),
Conv2d(
in_filters[i], num_filters[i], 3, stride=layer_strides[i]),
norm_layer,
build_conv_layer(
conv_cfg,
in_filters[i],
out_channels[i],
3,
stride=layer_strides[i],
padding=1),
build_norm_layer(norm_cfg, out_channels[i])[1],
nn.ReLU(inplace=True),
]
for j in range(layer_num):
norm_layer = (
build_norm_layer(norm_cfg, num_filters[i])[1]
if norm_cfg is not None else Empty)
block.append(
Conv2d(num_filters[i], num_filters[i], 3, padding=1))
block.append(norm_layer)
build_conv_layer(
conv_cfg,
out_channels[i],
out_channels[i],
3,
padding=1))
block.append(build_norm_layer(norm_cfg, out_channels[i])[1])
block.append(nn.ReLU(inplace=True))
block = nn.Sequential(*block)
......@@ -71,6 +62,8 @@ class SECOND(nn.Module):
self.blocks = nn.ModuleList(blocks)
def init_weights(self, pretrained=None):
# Do not initialize the conv layers
# to follow the original implementation
if isinstance(pretrained, str):
from mmdet3d.utils import get_root_logger
logger = get_root_logger()
......
from functools import partial
import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer, constant_init, kaiming_init
from torch.nn import Sequential
from torch.nn.modules.batchnorm import _BatchNorm
from mmcv.cnn import (build_norm_layer, build_upsample_layer, constant_init,
is_norm, kaiming_init)
from mmdet.models import NECKS
from .. import builder
......@@ -12,36 +9,40 @@ from .. import builder
@NECKS.register_module()
class SECONDFPN(nn.Module):
"""Compare with RPN, RPNV2 support arbitrary number of stage.
"""FPN used in SECOND/PointPillars/PartA2/MVXNet
Args:
in_channels (list[int]): Input channels of multi-scale feature maps
out_channels (list[int]): Output channels of feature maps
upsample_strides (list[int]): Strides used to upsample the feature maps
norm_cfg (dict): Config dict of normalization layers
upsample_cfg (dict): Config dict of upsample layers
"""
def __init__(self,
use_norm=True,
in_channels=[128, 128, 256],
out_channels=[256, 256, 256],
upsample_strides=[1, 2, 4],
num_upsample_filters=[256, 256, 256],
norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01)):
norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01),
upsample_cfg=dict(type='deconv', bias=False)):
# if for GroupNorm,
# cfg is dict(type='GN', num_groups=num_groups, eps=1e-3, affine=True)
super(SECONDFPN, self).__init__()
assert len(num_upsample_filters) == len(upsample_strides)
assert len(out_channels) == len(upsample_strides) == len(in_channels)
self.in_channels = in_channels
ConvTranspose2d = partial(nn.ConvTranspose2d, bias=False)
self.out_channels = out_channels
deblocks = []
for i, num_upsample_filter in enumerate(num_upsample_filters):
norm_layer = build_norm_layer(norm_cfg, num_upsample_filter)[1]
deblock = Sequential(
ConvTranspose2d(
in_channels[i],
num_upsample_filter,
upsample_strides[i],
stride=upsample_strides[i]),
norm_layer,
nn.ReLU(inplace=True),
)
for i, out_channel in enumerate(out_channels):
upsample_layer = build_upsample_layer(
upsample_cfg,
in_channels=in_channels[i],
out_channels=out_channel,
kernel_size=upsample_strides[i],
stride=upsample_strides[i])
deblock = nn.Sequential(upsample_layer,
build_norm_layer(norm_cfg, out_channel)[1],
nn.ReLU(inplace=True))
deblocks.append(deblock)
self.deblocks = nn.ModuleList(deblocks)
......@@ -49,7 +50,7 @@ class SECONDFPN(nn.Module):
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
elif is_norm(m):
constant_init(m, 1)
def forward(self, x):
......@@ -65,30 +66,34 @@ class SECONDFPN(nn.Module):
@NECKS.register_module()
class SECONDFusionFPN(SECONDFPN):
"""Compare with RPN, RPNV2 support arbitrary number of stage.
"""FPN used in multi-modality SECOND/PointPillars
Args:
in_channels (list[int]): Input channels of multi-scale feature maps
out_channels (list[int]): Output channels of feature maps
upsample_strides (list[int]): Strides used to upsample the feature maps
norm_cfg (dict): Config dict of normalization layers
upsample_cfg (dict): Config dict of upsample layers
downsample_rates (list[int]): The downsample rate of feature map in
comparison to the original voxelization input
fusion_layer (dict): Config dict of fusion layers
"""
def __init__(self,
use_norm=True,
in_channels=[128, 128, 256],
out_channels=[256, 256, 256],
upsample_strides=[1, 2, 4],
num_upsample_filters=[256, 256, 256],
norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01),
down_sample_rate=[40, 8, 8],
fusion_layer=None,
cat_points=False):
super(SECONDFusionFPN, self).__init__(
use_norm,
in_channels,
upsample_strides,
num_upsample_filters,
norm_cfg,
)
upsample_cfg=dict(type='deconv', bias=False),
downsample_rates=[40, 8, 8],
fusion_layer=None):
super(SECONDFusionFPN,
self).__init__(in_channels, out_channels, upsample_strides,
norm_cfg, upsample_cfg)
self.fusion_layer = None
if fusion_layer is not None:
self.fusion_layer = builder.build_fusion_layer(fusion_layer)
self.cat_points = cat_points
self.down_sample_rate = down_sample_rate
self.downsample_rates = downsample_rates
def forward(self,
x,
......@@ -107,11 +112,11 @@ class SECONDFusionFPN(SECONDFPN):
downsample_pts_coors = torch.zeros_like(coors)
downsample_pts_coors[:, 0] = coors[:, 0]
downsample_pts_coors[:, 1] = (
coors[:, 1] / self.down_sample_rate[0])
coors[:, 1] / self.downsample_rates[0])
downsample_pts_coors[:, 2] = (
coors[:, 2] / self.down_sample_rate[1])
coors[:, 2] / self.downsample_rates[1])
downsample_pts_coors[:, 3] = (
coors[:, 3] / self.down_sample_rate[2])
coors[:, 3] / self.downsample_rates[2])
# fusion for each point
out = self.fusion_layer(img_feats, points, out,
downsample_pts_coors, img_meta)
......
# These must be installed before building mmdetection
numpy
torch>=1.1
torch>=1.3
matplotlib
mmcv>=0.5.0
mmcv>=0.5.1
numba==0.45.1
numpy
# need older pillow until torchvision is fixed
......
import pytest
def test_secfpn():
neck_cfg = dict(
type='SECONDFPN',
in_channels=[2, 3],
upsample_strides=[1, 2],
out_channels=[4, 6],
)
from mmdet.models.builder import build_neck
neck = build_neck(neck_cfg)
assert neck.deblocks[0][0].in_channels == 2
assert neck.deblocks[1][0].in_channels == 3
assert neck.deblocks[0][0].out_channels == 4
assert neck.deblocks[1][0].out_channels == 6
assert neck.deblocks[0][0].stride == (1, 1)
assert neck.deblocks[1][0].stride == (2, 2)
assert neck is not None
neck_cfg = dict(
type='SECONDFPN',
in_channels=[2, 2],
upsample_strides=[1, 2, 4],
out_channels=[2, 2],
)
with pytest.raises(AssertionError):
build_neck(neck_cfg)
neck_cfg = dict(
type='SECONDFPN',
in_channels=[2, 2, 4],
upsample_strides=[1, 2, 4],
out_channels=[2, 2],
)
with pytest.raises(AssertionError):
build_neck(neck_cfg)
......@@ -64,7 +64,7 @@ def test_indoor_flip_data():
def test_global_rot_scale():
np.random.seed(0)
sunrgbd_augment = IndoorGlobalRotScale(
True, rot_range=[-np.pi / 6, np.pi / 6], scale_range=[0.85, 1.15])
True, rot_range=[-1 / 6, 1 / 6], scale_range=[0.85, 1.15])
sunrgbd_results = dict()
sunrgbd_results['points'] = np.array(
[[1.02828765e+00, 3.65790772e+00, 1.97294697e-01, 1.61959505e+00],
......@@ -101,7 +101,7 @@ def test_global_rot_scale():
np.random.seed(0)
scannet_augment = IndoorGlobalRotScale(
True, rot_range=[-np.pi * 1 / 36, np.pi * 1 / 36], scale_range=None)
True, rot_range=[-1 * 1 / 36, 1 / 36], scale_range=None)
scannet_results = dict()
scannet_results['points'] = np.array(
[[1.6110241e+00, -1.6903955e-01, 5.8115810e-01, 5.9897250e-01],
......
......@@ -39,15 +39,16 @@ def test_load_annotations3D():
sunrgbd_info = mmcv.load('./tests/data/sunrgbd/sunrgbd_infos.pkl')[0]
if sunrgbd_info['annos']['gt_num'] != 0:
sunrgbd_gt_bboxes_3d = sunrgbd_info['annos']['gt_boxes_upright_depth']
sunrgbd_gt_labels = sunrgbd_info['annos']['class'].reshape(-1, 1)
sunrgbd_gt_bboxes_3d_mask = np.ones_like(sunrgbd_gt_labels)
sunrgbd_gt_labels_3d = sunrgbd_info['annos']['class']
sunrgbd_gt_bboxes_3d_mask = np.ones_like(
sunrgbd_gt_labels_3d, dtype=np.bool)
else:
sunrgbd_gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32)
sunrgbd_gt_labels = np.zeros((1, 1))
sunrgbd_gt_bboxes_3d_mask = np.zeros((1, 1))
sunrgbd_gt_labels_3d = np.zeros((1, ))
sunrgbd_gt_bboxes_3d_mask = np.zeros((1, ), dtype=np.bool)
assert sunrgbd_gt_bboxes_3d.shape == (3, 7)
assert sunrgbd_gt_labels.shape == (3, 1)
assert sunrgbd_gt_bboxes_3d_mask.shape == (3, 1)
assert sunrgbd_gt_labels_3d.shape == (3, )
assert sunrgbd_gt_bboxes_3d_mask.shape == (3, )
scannet_info = mmcv.load('./tests/data/scannet/scannet_infos.pkl')[0]
scannet_load_annotations3D = IndoorLoadAnnotations3D()
......@@ -55,29 +56,29 @@ def test_load_annotations3D():
data_path = './tests/data/scannet/scannet_train_instance_data'
if scannet_info['annos']['gt_num'] != 0:
scannet_gt_bboxes_3d = scannet_info['annos']['gt_boxes_upright_depth']
scannet_gt_labels = scannet_info['annos']['class'].reshape(-1, 1)
scannet_gt_bboxes_3d_mask = np.ones_like(scannet_gt_labels)
scannet_gt_labels_3d = scannet_info['annos']['class']
scannet_gt_bboxes_3d_mask = np.ones_like(
scannet_gt_labels_3d, dtype=np.bool)
else:
scannet_gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32)
scannet_gt_labels = np.zeros((1, 1))
scannet_gt_bboxes_3d_mask = np.zeros((1, 1))
scannet_gt_labels_3d = np.zeros((1, ))
scannet_gt_bboxes_3d_mask = np.zeros((1, ), dtype=np.bool)
scan_name = scannet_info['point_cloud']['lidar_idx']
scannet_results['pts_instance_mask_path'] = osp.join(
data_path, f'{scan_name}_ins_label.npy')
scannet_results['pts_semantic_mask_path'] = osp.join(
data_path, f'{scan_name}_sem_label.npy')
scannet_results['info'] = scannet_info
scannet_results['gt_bboxes_3d'] = scannet_gt_bboxes_3d
scannet_results['gt_labels'] = scannet_gt_labels
scannet_results['gt_labels_3d'] = scannet_gt_labels_3d
scannet_results['gt_bboxes_3d_mask'] = scannet_gt_bboxes_3d_mask
scannet_results = scannet_load_annotations3D(scannet_results)
scannet_gt_boxes = scannet_results['gt_bboxes_3d']
scannet_gt_lbaels = scannet_results['gt_labels']
scannet_gt_lbaels = scannet_results['gt_labels_3d']
scannet_gt_boxes_mask = scannet_results['gt_bboxes_3d_mask']
scannet_pts_instance_mask = scannet_results['pts_instance_mask']
scannet_pts_semantic_mask = scannet_results['pts_semantic_mask']
assert scannet_gt_boxes.shape == (27, 6)
assert scannet_gt_lbaels.shape == (27, 1)
assert scannet_gt_boxes_mask.shape == (27, 1)
assert scannet_gt_lbaels.shape == (27, )
assert scannet_gt_boxes_mask.shape == (27, )
assert scannet_pts_instance_mask.shape == (100, )
assert scannet_pts_semantic_mask.shape == (100, )
import os.path as osp
import mmcv
import numpy as np
from mmdet3d.datasets.pipelines import Compose
def test_scannet_pipeline():
class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
'window', 'bookshelf', 'picture', 'counter', 'desk',
'curtain', 'refrigerator', 'showercurtrain', 'toilet',
'sink', 'bathtub', 'garbagebin')
np.random.seed(0)
pipelines = [
dict(
type='IndoorLoadPointsFromFile',
use_height=True,
load_dim=6,
use_dim=[0, 1, 2]),
dict(type='IndoorLoadAnnotations3D'),
dict(type='IndoorPointSample', num_points=5),
dict(type='IndoorFlipData', flip_ratio_yz=1.0, flip_ratio_xz=1.0),
dict(
type='IndoorGlobalRotScale',
use_height=True,
rot_range=[-1 / 36, 1 / 36],
scale_range=None),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(
type='Collect3D',
keys=[
'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
'pts_instance_mask'
]),
]
pipeline = Compose(pipelines)
info = mmcv.load('./tests/data/scannet/scannet_infos.pkl')[0]
results = dict()
data_path = './tests/data/scannet/scannet_train_instance_data'
results['data_path'] = data_path
scan_name = info['point_cloud']['lidar_idx']
results['pts_filename'] = osp.join(data_path, f'{scan_name}_vert.npy')
if info['annos']['gt_num'] != 0:
scannet_gt_bboxes_3d = info['annos']['gt_boxes_upright_depth']
scannet_gt_labels_3d = info['annos']['class']
scannet_gt_bboxes_3d_mask = np.ones_like(
scannet_gt_labels_3d, dtype=np.bool)
else:
scannet_gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32)
scannet_gt_labels_3d = np.zeros((1, ))
scannet_gt_bboxes_3d_mask = np.zeros((1, ), dtype=np.bool)
scan_name = info['point_cloud']['lidar_idx']
results['pts_instance_mask_path'] = osp.join(data_path,
f'{scan_name}_ins_label.npy')
results['pts_semantic_mask_path'] = osp.join(data_path,
f'{scan_name}_sem_label.npy')
results['gt_bboxes_3d'] = scannet_gt_bboxes_3d
results['gt_labels_3d'] = scannet_gt_labels_3d
results['gt_bboxes_3d_mask'] = scannet_gt_bboxes_3d_mask
results = pipeline(results)
points = results['points']._data
gt_bboxes_3d = results['gt_bboxes_3d']._data
gt_labels_3d = results['gt_labels_3d']._data
pts_semantic_mask = results['pts_semantic_mask']._data
pts_instance_mask = results['pts_instance_mask']._data
expected_points = np.array(
[[-2.9078157, -1.9569951, 2.3543026, 2.389488],
[-0.71360034, -3.4359822, 2.1330001, 2.1681855],
[-1.332374, 1.474838, -0.04405887, -0.00887359],
[2.1336637, -1.3265059, -0.02880373, 0.00638155],
[0.43895668, -3.0259454, 1.5560012, 1.5911865]])
expected_gt_bboxes_3d = np.array([
[-1.5005362, -3.512584, 1.8565295, 1.7457027, 0.24149807, 0.57235193],
[-2.8848705, 3.4961755, 1.5268247, 0.66170084, 0.17433672, 0.67153597],
[-1.1585636, -2.192365, 0.61649567, 0.5557011, 2.5375574, 1.2144762],
[-2.930457, -2.4856408, 0.9722377, 0.6270478, 1.8461524, 0.28697443],
[3.3114715, -0.00476722, 1.0712197, 0.46191898, 3.8605113, 2.1603441]
])
expected_gt_labels_3d = np.array([
6, 6, 4, 9, 11, 11, 10, 0, 15, 17, 17, 17, 3, 12, 4, 4, 14, 1, 0, 0, 0,
0, 0, 0, 5, 5, 5
])
expected_pts_semantic_mask = np.array([3, 1, 2, 2, 15])
expected_pts_instance_mask = np.array([44, 22, 10, 10, 57])
assert np.allclose(points, expected_points)
assert np.allclose(gt_bboxes_3d[:5, :], expected_gt_bboxes_3d)
assert np.all(gt_labels_3d.numpy() == expected_gt_labels_3d)
assert np.all(pts_semantic_mask.numpy() == expected_pts_semantic_mask)
assert np.all(pts_instance_mask.numpy() == expected_pts_instance_mask)
def test_sunrgbd_pipeline():
class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
'dresser', 'night_stand', 'bookshelf', 'bathtub')
np.random.seed(0)
pipelines = [
dict(
type='IndoorLoadPointsFromFile',
use_height=True,
load_dim=6,
use_dim=[0, 1, 2]),
dict(type='IndoorFlipData', flip_ratio_yz=1.0),
dict(
type='IndoorGlobalRotScale',
use_height=True,
rot_range=[-1 / 6, 1 / 6],
scale_range=[0.85, 1.15]),
dict(type='IndoorPointSample', num_points=5),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(
type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']),
]
pipeline = Compose(pipelines)
results = dict()
info = mmcv.load('./tests/data/sunrgbd/sunrgbd_infos.pkl')[0]
data_path = './tests/data/sunrgbd/sunrgbd_trainval'
scan_name = info['point_cloud']['lidar_idx']
results['pts_filename'] = osp.join(data_path, 'lidar',
f'{scan_name:06d}.npy')
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth']
gt_labels_3d = info['annos']['class']
gt_bboxes_3d_mask = np.ones_like(gt_labels_3d, dtype=np.bool)
else:
gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32)
gt_labels_3d = np.zeros((1, ))
gt_bboxes_3d_mask = np.zeros((1, ), dtype=np.bool)
results['gt_bboxes_3d'] = gt_bboxes_3d
results['gt_labels_3d'] = gt_labels_3d
results['gt_bboxes_3d_mask'] = gt_bboxes_3d_mask
results = pipeline(results)
points = results['points']._data
gt_bboxes_3d = results['gt_bboxes_3d']._data
gt_labels_3d = results['gt_labels_3d']._data
expected_points = np.array(
[[0.6570105, 1.5538014, 0.24514851, 1.0165423],
[0.656101, 1.558591, 0.21755838, 0.98895216],
[0.6293659, 1.5679953, -0.10004003, 0.67135376],
[0.6068739, 1.5974995, -0.41063973, 0.36075398],
[0.6464709, 1.5573514, 0.15114647, 0.9225402]])
expected_gt_bboxes_3d = np.array([[
-2.012483, 3.9473376, -0.25446942, 2.3730404, 1.9457763, 2.0303352,
1.2205974
],
[
-3.7036808, 4.2396426, -0.81091917,
0.6032123, 0.91040343, 1.003341,
1.2662518
],
[
0.6528646, 2.1638472, -0.15228128,
0.7347852, 1.6113238, 2.1694272,
2.81404
]])
expected_gt_labels_3d = np.array([0, 7, 6])
assert np.allclose(gt_bboxes_3d, expected_gt_bboxes_3d)
assert np.allclose(gt_labels_3d.flatten(), expected_gt_labels_3d)
assert np.allclose(points, expected_points)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment