"tests/git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "8bff78235417f1ef9dc4093b8ea90740bcbd07da"
Unverified Commit ac39ca96 authored by Wenwei Zhang's avatar Wenwei Zhang Committed by GitHub
Browse files

Update fp16 models and performance (#178)

* Support to train using FP16

* fix type inconsistency error on naive syncBN

* resolve comments

* clean nan check

* clean nan check

* clean unnecessary modification

* update model link
parent 47352e04
......@@ -13,11 +13,16 @@ Mixed precision training for PointNet-based methods will be supported in the fut
### SECOND on KITTI dataset
| Backbone |Class| Lr schd | FP32 Mem (GB) | FP16 Mem (GB) | FP32 mAP | FP16 mAP |Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | :------: |
| [SECFPN](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py)| Car |cyclic 80e|5.4|2.9|79.07|78.72||
| [SECFPN](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py)| 3 Class |cyclic 80e|5.4|2.9|64.41|67.4||
| [SECFPN](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py)| Car |cyclic 80e|5.4|2.9|79.07|78.72|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth)| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301.log.json)|
| [SECFPN](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py)| 3 Class |cyclic 80e|5.4|2.9|64.41|67.4|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059.log.json)|
### PointPillars on nuScenes dataset
| Backbone | Lr schd | FP32 Mem (GB) | FP16 Mem (GB) | FP32 mAP | FP32 NDS| FP16 mAP | FP16 NDS| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :----: |:----: | :------: |
|[SECFPN](./hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py)|2x|16.4|8.37|35.17|49.7|35.19|50.27|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626-c3f0483e.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626.log.json)|
|[FPN](./hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py)|2x|16.4|8.40|40.0|53.3|39.26|53.26|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719-269f9dd6.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719.log.json)|
**Note**: With mixed precision training, we can train PointPillars with RegNet-400mf on 8 Titan XP GPUS with batch size of 2.
**Note**:
1. With mixed precision training, we can train PointPillars with nuScenes dataset on 8 Titan XP GPUS with batch size of 2.
This will cause OOM error without mixed precision training.
2. The loss scale for PointPillars on nuScenes dataset is specifically tuned to avoid the loss to be Nan. We find 32 is more stable than 512, though loss scale 32 still cause Nan sometimes.
_base_ = '../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py'
data = dict(samples_per_gpu=2, workers_per_gpu=2)
# fp16 settings
fp16 = dict(loss_scale=512.)
# fp16 settings, the loss scale is specifically tuned to avoid Nan
fp16 = dict(loss_scale=32.)
_base_ = '../regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py'
data = dict(samples_per_gpu=2, workers_per_gpu=2)
# fp16 settings
fp16 = dict(loss_scale=512.)
# fp16 settings, the loss scale is specifically tuned to avoid Nan
fp16 = dict(loss_scale=32.)
_base_ = '../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py'
data = dict(samples_per_gpu=2, workers_per_gpu=2)
# fp16 settings
fp16 = dict(loss_scale=512.)
# fp16 settings, the loss scale is specifically tuned to avoid Nan
fp16 = dict(loss_scale=32.)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment