Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
ab247e5e
Commit
ab247e5e
authored
May 12, 2020
by
zhangwenwei
Browse files
Update comments
parent
f95de58b
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
1 addition
and
218 deletions
+1
-218
configs/nus/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py
configs/nus/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py
+0
-217
mmdet3d/models/necks/second_fpn.py
mmdet3d/models/necks/second_fpn.py
+1
-1
No files found.
configs/nus/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py
deleted
100644 → 0
View file @
f95de58b
# model settings
voxel_size
=
[
0.25
,
0.25
,
8
]
point_cloud_range
=
[
-
50
,
-
50
,
-
5
,
50
,
50
,
3
]
class_names
=
[
'car'
,
'truck'
,
'trailer'
,
'bus'
,
'construction_vehicle'
,
'bicycle'
,
'motorcycle'
,
'pedestrian'
,
'traffic_cone'
,
'barrier'
]
model
=
dict
(
type
=
'MVXFasterRCNNV2'
,
pts_voxel_layer
=
dict
(
max_num_points
=
64
,
# max_points_per_voxel
point_cloud_range
=
point_cloud_range
,
# velodyne coordinates, x, y, z
voxel_size
=
voxel_size
,
max_voxels
=
(
30000
,
40000
),
# (training, testing) max_coxels
),
pts_voxel_encoder
=
dict
(
type
=
'HardVFE'
,
num_input_features
=
4
,
num_filters
=
[
64
,
64
],
with_distance
=
False
,
voxel_size
=
voxel_size
,
with_cluster_center
=
True
,
with_voxel_center
=
True
,
point_cloud_range
=
point_cloud_range
,
norm_cfg
=
dict
(
type
=
'naiveSyncBN1d'
,
eps
=
1e-3
,
momentum
=
0.01
)),
pts_middle_encoder
=
dict
(
type
=
'PointPillarsScatter'
,
in_channels
=
64
,
output_shape
=
[
400
,
400
],
# checked from PointCloud3D
),
pts_backbone
=
dict
(
type
=
'SECOND'
,
in_channels
=
64
,
norm_cfg
=
dict
(
type
=
'naiveSyncBN2d'
,
eps
=
1e-3
,
momentum
=
0.01
),
layer_nums
=
[
3
,
5
,
5
],
layer_strides
=
[
2
,
2
,
2
],
num_filters
=
[
64
,
128
,
256
],
),
pts_neck
=
dict
(
type
=
'FPN'
,
norm_cfg
=
dict
(
type
=
'naiveSyncBN2d'
,
eps
=
1e-3
,
momentum
=
0.01
),
act_cfg
=
dict
(
type
=
'ReLU'
),
in_channels
=
[
64
,
128
,
256
],
out_channels
=
256
,
start_level
=
0
,
num_outs
=
3
,
),
pts_bbox_head
=
dict
(
type
=
'Anchor3DVeloHead'
,
class_names
=
class_names
,
num_classes
=
10
,
in_channels
=
256
,
feat_channels
=
256
,
use_direction_classifier
=
True
,
encode_bg_as_zeros
=
True
,
anchor_generator
=
dict
(
type
=
'Anchor3DRangeGenerator'
,
ranges
=
[[
-
50
,
-
50
,
-
1.80
,
50
,
50
,
-
1.80
]],
strides
=
[
1
,
2
,
4
],
sizes
=
[
[
0.577
,
1.732
,
1.
],
[
1.
,
1.
,
1.
],
[
0.4
,
0.4
,
1
],
],
custom_values
=
[
0
,
0
],
rotations
=
[
0
,
1.57
],
reshape_out
=
True
),
assigner_per_size
=
False
,
diff_rad_by_sin
=
True
,
dir_offset
=
0.7854
,
# pi/4
dir_limit_offset
=
0
,
bbox_coder
=
dict
(
type
=
'DeltaXYZWLHRBBoxCoder'
,
),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
),
loss_dir
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.2
),
),
)
# model training and testing settings
train_cfg
=
dict
(
pts
=
dict
(
assigner
=
dict
(
# for Car
type
=
'MaxIoUAssigner'
,
iou_calculator
=
dict
(
type
=
'BboxOverlapsNearest3D'
),
pos_iou_thr
=
0.6
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
allowed_border
=
0
,
code_weight
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
0.2
,
0.2
],
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
pts
=
dict
(
use_rotate_nms
=
True
,
nms_across_levels
=
False
,
nms_pre
=
1000
,
nms_thr
=
0.2
,
score_thr
=
0.05
,
min_bbox_size
=
0
,
max_per_img
=
500
,
post_center_limit_range
=
point_cloud_range
,
# TODO: check whether need to change this
# post_center_limit_range=[-59.6, -59.6, -6, 59.6, 59.6, 4],
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
))
# dataset settings
dataset_type
=
'NuScenesDataset'
data_root
=
'data/nuscenes/'
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
input_modality
=
dict
(
use_lidar
=
True
,
use_depth
=
False
,
use_lidar_intensity
=
True
,
use_camera
=
False
,
)
db_sampler
=
dict
(
root_path
=
data_root
,
info_path
=
data_root
+
'nuscenes_dbinfos_train.pkl'
,
rate
=
1.0
,
use_road_plane
=
False
,
object_rot_range
=
[
0.0
,
0.0
],
prepare
=
dict
(),
sample_groups
=
dict
(
bus
=
4
,
trailer
=
4
,
truck
=
4
,
),
)
train_pipeline
=
[
dict
(
type
=
'GlobalRotScale'
,
rot_uniform_noise
=
[
-
0.3925
,
0.3925
],
scaling_uniform_noise
=
[
0.95
,
1.05
],
trans_normal_noise
=
[
0
,
0
,
0
]),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0.5
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
]),
]
test_pipeline
=
[
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
]),
]
data
=
dict
(
samples_per_gpu
=
4
,
workers_per_gpu
=
4
,
train
=
dict
(
type
=
dataset_type
,
root_path
=
data_root
,
ann_file
=
data_root
+
'nuscenes_infos_train.pkl'
,
pipeline
=
train_pipeline
,
modality
=
input_modality
,
class_names
=
class_names
,
with_label
=
True
),
val
=
dict
(
type
=
dataset_type
,
root_path
=
data_root
,
ann_file
=
data_root
+
'nuscenes_infos_val.pkl'
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
class_names
=
class_names
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
root_path
=
data_root
,
ann_file
=
data_root
+
'nuscenes_infos_val.pkl'
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
class_names
=
class_names
,
with_label
=
False
))
# optimizer
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
0.001
,
weight_decay
=
0.01
)
# max_norm=10 is better for SECOND
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
1000
,
warmup_ratio
=
1.0
/
1000
,
step
=
[
20
,
23
])
momentum_config
=
None
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
evaluation
=
dict
(
interval
=
20
)
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
dict
(
type
=
'TensorboardLoggerHook'
)
])
# yapf:enable
# runtime settings
total_epochs
=
24
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
mmdet3d/models/necks/second_fpn.py
View file @
ab247e5e
...
@@ -9,7 +9,7 @@ from .. import builder
...
@@ -9,7 +9,7 @@ from .. import builder
@
NECKS
.
register_module
()
@
NECKS
.
register_module
()
class
SECONDFPN
(
nn
.
Module
):
class
SECONDFPN
(
nn
.
Module
):
"""FPN used in SECOND/PointPillars
"""FPN used in SECOND/PointPillars
/PartA2/MVXNet
Args:
Args:
in_channels (list[int]): Input channels of multi-scale feature maps
in_channels (list[int]): Input channels of multi-scale feature maps
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment