"git@developer.sourcefind.cn:OpenDAS/megatron-lm.git" did not exist on "a0bcee9488a000f0341191d81251d8fbfdf2898b"
Unverified Commit a481f5a8 authored by xiliu8006's avatar xiliu8006 Committed by GitHub
Browse files

[Enhance] Move train_cfg test_cfg to model (#307)

* Move train_cfg/test_cfg to model

* Move train_cfg/test_cfg to model

* Move train_cfg/test_cfg to model

* Move train_cfg/test_cfg to model

* Move train_cfg/test_cfg to model

* Move train_cfg/test_cfg to model

* Move train_cfg/test_cfg to model

* Move train_cfg and test_cfg into model

* modify centerpoint configs

* Modify docs

* modify build_detector

* modify test_config_build_detector

* modify build_detector parameters

* Adopt the same strategy in build_detector
parent a347ac75
......@@ -65,17 +65,16 @@ model = dict(
type='SmoothL1Loss', reduction='sum', loss_weight=1.0),
corner_loss=dict(
type='SmoothL1Loss', reduction='sum', loss_weight=1.0),
vote_loss=dict(type='SmoothL1Loss', reduction='sum', loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
sample_mod='spec', pos_distance_thr=10.0, expand_dims_length=0.05)
test_cfg = dict(
nms_cfg=dict(type='nms', iou_thr=0.1),
sample_mod='spec',
score_thr=0.0,
per_class_proposal=True,
max_output_num=100)
vote_loss=dict(type='SmoothL1Loss', reduction='sum', loss_weight=1.0)),
# model training and testing settings
train_cfg=dict(
sample_mod='spec', pos_distance_thr=10.0, expand_dims_length=0.05),
test_cfg=dict(
nms_cfg=dict(type='nms', iou_thr=0.1),
sample_mod='spec',
score_thr=0.0,
per_class_proposal=True,
max_output_num=100))
# optimizer
# This schedule is mainly used by models on indoor dataset,
......
......@@ -105,96 +105,96 @@ model = dict(
conv_out_channels=256,
num_classes=80,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False),
dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
match_low_quality=False,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False)
])
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100,
mask_thr_binary=0.5))
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False)
]),
test_cfg=dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100,
mask_thr_binary=0.5)))
......@@ -56,28 +56,28 @@ model = dict(
type='SeparateHead', init_bias=-2.19, final_kernel=3),
loss_cls=dict(type='GaussianFocalLoss', reduction='mean'),
loss_bbox=dict(type='L1Loss', reduction='mean', loss_weight=0.25),
norm_bbox=True))
# model training and testing settings
train_cfg = dict(
pts=dict(
grid_size=[1024, 1024, 40],
voxel_size=voxel_size,
out_size_factor=8,
dense_reg=1,
gaussian_overlap=0.1,
max_objs=500,
min_radius=2,
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2]))
test_cfg = dict(
pts=dict(
post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
max_per_img=500,
max_pool_nms=False,
min_radius=[4, 12, 10, 1, 0.85, 0.175],
score_threshold=0.1,
out_size_factor=8,
voxel_size=voxel_size[:2],
nms_type='rotate',
pre_max_size=1000,
post_max_size=83,
nms_thr=0.2))
norm_bbox=True),
# model training and testing settings
train_cfg=dict(
pts=dict(
grid_size=[1024, 1024, 40],
voxel_size=voxel_size,
out_size_factor=8,
dense_reg=1,
gaussian_overlap=0.1,
max_objs=500,
min_radius=2,
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2])),
test_cfg=dict(
pts=dict(
post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
max_per_img=500,
max_pool_nms=False,
min_radius=[4, 12, 10, 1, 0.85, 0.175],
score_threshold=0.1,
out_size_factor=8,
voxel_size=voxel_size[:2],
nms_type='rotate',
pre_max_size=1000,
post_max_size=83,
nms_thr=0.2)))
......@@ -55,29 +55,29 @@ model = dict(
type='SeparateHead', init_bias=-2.19, final_kernel=3),
loss_cls=dict(type='GaussianFocalLoss', reduction='mean'),
loss_bbox=dict(type='L1Loss', reduction='mean', loss_weight=0.25),
norm_bbox=True))
# model training and testing settings
train_cfg = dict(
pts=dict(
grid_size=[512, 512, 1],
voxel_size=voxel_size,
out_size_factor=4,
dense_reg=1,
gaussian_overlap=0.1,
max_objs=500,
min_radius=2,
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2]))
test_cfg = dict(
pts=dict(
post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
max_per_img=500,
max_pool_nms=False,
min_radius=[4, 12, 10, 1, 0.85, 0.175],
score_threshold=0.1,
pc_range=[-51.2, -51.2],
out_size_factor=4,
voxel_size=voxel_size[:2],
nms_type='rotate',
pre_max_size=1000,
post_max_size=83,
nms_thr=0.2))
norm_bbox=True),
# model training and testing settings
train_cfg=dict(
pts=dict(
grid_size=[512, 512, 1],
voxel_size=voxel_size,
out_size_factor=4,
dense_reg=1,
gaussian_overlap=0.1,
max_objs=500,
min_radius=2,
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2])),
test_cfg=dict(
pts=dict(
post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
max_per_img=500,
max_pool_nms=False,
min_radius=[4, 12, 10, 1, 0.85, 0.175],
score_threshold=0.1,
pc_range=[-51.2, -51.2],
out_size_factor=4,
voxel_size=voxel_size[:2],
nms_type='rotate',
pre_max_size=1000,
post_max_size=83,
nms_thr=0.2)))
......@@ -311,32 +311,31 @@ model = dict(
reduction='none',
loss_weight=5.0),
primitive_center_loss=dict(
type='MSELoss', reduction='none', loss_weight=1.0))))
# model training and testing settings
train_cfg = dict(
rpn=dict(pos_distance_thr=0.3, neg_distance_thr=0.6, sample_mod='vote'),
rpn_proposal=dict(use_nms=False),
rcnn=dict(
pos_distance_thr=0.3,
neg_distance_thr=0.6,
sample_mod='vote',
far_threshold=0.6,
near_threshold=0.3,
mask_surface_threshold=0.3,
label_surface_threshold=0.3,
mask_line_threshold=0.3,
label_line_threshold=0.3))
test_cfg = dict(
rpn=dict(
sample_mod='seed',
nms_thr=0.25,
score_thr=0.05,
per_class_proposal=True,
use_nms=False),
rcnn=dict(
sample_mod='seed',
nms_thr=0.25,
score_thr=0.05,
per_class_proposal=True))
type='MSELoss', reduction='none', loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=dict(
pos_distance_thr=0.3, neg_distance_thr=0.6, sample_mod='vote'),
rpn_proposal=dict(use_nms=False),
rcnn=dict(
pos_distance_thr=0.3,
neg_distance_thr=0.6,
sample_mod='vote',
far_threshold=0.6,
near_threshold=0.3,
mask_surface_threshold=0.3,
label_surface_threshold=0.3,
mask_line_threshold=0.3,
label_line_threshold=0.3)),
test_cfg=dict(
rpn=dict(
sample_mod='seed',
nms_thr=0.25,
score_thr=0.05,
per_class_proposal=True,
use_nms=False),
rcnn=dict(
sample_mod='seed',
nms_thr=0.25,
score_thr=0.05,
per_class_proposal=True)))
......@@ -17,6 +17,6 @@ model = dict(
num_classes=9,
anchor_generator=dict(
ranges=[[-80, -80, -1.8, 80, 80, -1.8]], custom_values=[]),
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=7)))
# model training settings (based on nuScenes model settings)
train_cfg = dict(pts=dict(code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]))
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=7)),
# model training settings (based on nuScenes model settings)
train_cfg=dict(pts=dict(code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])))
......@@ -70,27 +70,27 @@ model = dict(
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)))
# model training and testing settings
train_cfg = dict(
pts=dict(
assigner=dict(
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
allowed_border=0,
code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2],
pos_weight=-1,
debug=False))
test_cfg = dict(
pts=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_pre=1000,
nms_thr=0.2,
score_thr=0.05,
min_bbox_size=0,
max_num=500))
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)),
# model training and testing settings
train_cfg=dict(
pts=dict(
assigner=dict(
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
allowed_border=0,
code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2],
pos_weight=-1,
debug=False)),
test_cfg=dict(
pts=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_pre=1000,
nms_thr=0.2,
score_thr=0.05,
min_bbox_size=0,
max_num=500)))
......@@ -17,6 +17,6 @@ model = dict(
num_classes=9,
anchor_generator=dict(
ranges=[[-100, -100, -1.8, 100, 100, -1.8]], custom_values=[]),
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=7)))
# model training settings (based on nuScenes model settings)
train_cfg = dict(pts=dict(code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]))
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=7)),
# model training settings (based on nuScenes model settings)
train_cfg=dict(pts=dict(code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])))
......@@ -52,40 +52,40 @@ model = dict(
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)))
# model training and testing settings
train_cfg = dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
],
allowed_border=0,
pos_weight=-1,
debug=False)
test_cfg = dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50)
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)),
# model training and testing settings
train_cfg=dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
],
allowed_border=0,
pos_weight=-1,
debug=False),
test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50))
......@@ -66,44 +66,43 @@ model = dict(
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)))
# model training and testing settings
train_cfg = dict(
pts=dict(
assigner=[
dict( # car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.55,
neg_iou_thr=0.4,
min_pos_iou=0.4,
ignore_iof_thr=-1),
dict( # cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
dict( # pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
],
allowed_border=0,
code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
pos_weight=-1,
debug=False))
test_cfg = dict(
pts=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_pre=4096,
nms_thr=0.25,
score_thr=0.1,
min_bbox_size=0,
max_num=500))
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)),
# model training and testing settings
train_cfg=dict(
pts=dict(
assigner=[
dict( # car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.55,
neg_iou_thr=0.4,
min_pos_iou=0.4,
ignore_iof_thr=-1),
dict( # cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
dict( # pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
],
allowed_border=0,
code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
pos_weight=-1,
debug=False)),
test_cfg=dict(
pts=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_pre=4096,
nms_thr=0.25,
score_thr=0.1,
min_bbox_size=0,
max_num=500)))
......@@ -48,40 +48,40 @@ model = dict(
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)))
# model training and testing settings
train_cfg = dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.35,
neg_iou_thr=0.2,
min_pos_iou=0.2,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.35,
neg_iou_thr=0.2,
min_pos_iou=0.2,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
],
allowed_border=0,
pos_weight=-1,
debug=False)
test_cfg = dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50)
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)),
# model training and testing settings
train_cfg=dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.35,
neg_iou_thr=0.2,
min_pos_iou=0.2,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.35,
neg_iou_thr=0.2,
min_pos_iou=0.2,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
],
allowed_border=0,
pos_weight=-1,
debug=False),
test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50))
......@@ -60,42 +60,41 @@ model = dict(
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)))
# model training and testing settings
train_cfg = dict(
assigner=[
dict( # car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.55,
neg_iou_thr=0.4,
min_pos_iou=0.4,
ignore_iof_thr=-1),
dict( # pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
dict( # cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1)
],
allowed_border=0,
code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
pos_weight=-1,
debug=False)
test_cfg = dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_pre=4096,
nms_thr=0.25,
score_thr=0.1,
min_bbox_size=0,
max_num=500)
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)),
# model training and testing settings
train_cfg=dict(
assigner=[
dict( # car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.55,
neg_iou_thr=0.4,
min_pos_iou=0.4,
ignore_iof_thr=-1),
dict( # pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
dict( # cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1)
],
allowed_border=0,
code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
pos_weight=-1,
debug=False),
test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_pre=4096,
nms_thr=0.25,
score_thr=0.1,
min_bbox_size=0,
max_num=500))
......@@ -65,60 +65,60 @@ model = dict(
conv_out_channels=256,
num_classes=80,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False))
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100,
mask_thr_binary=0.5))
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100,
mask_thr_binary=0.5)))
......@@ -62,8 +62,12 @@ model = dict(
size_res_loss=dict(
type='SmoothL1Loss', reduction='sum', loss_weight=10.0 / 3.0),
semantic_loss=dict(
type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(pos_distance_thr=0.3, neg_distance_thr=0.6, sample_mod='vote')
test_cfg = dict(
sample_mod='seed', nms_thr=0.25, score_thr=0.05, per_class_proposal=True)
type='CrossEntropyLoss', reduction='sum', loss_weight=1.0)),
# model training and testing settings
train_cfg=dict(
pos_distance_thr=0.3, neg_distance_thr=0.6, sample_mod='vote'),
test_cfg=dict(
sample_mod='seed',
nms_thr=0.25,
score_thr=0.05,
per_class_proposal=True))
......@@ -111,88 +111,94 @@ model = dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='sum',
loss_weight=1.0))))
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1)
],
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=9000,
nms_post=512,
max_num=512,
nms_thr=0.8,
score_thr=0,
use_rotate_nms=False),
rcnn=dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlaps3D', coordinate='lidar'),
pos_iou_thr=0.55,
neg_iou_thr=0.55,
min_pos_iou=0.55,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlaps3D', coordinate='lidar'),
pos_iou_thr=0.55,
neg_iou_thr=0.55,
min_pos_iou=0.55,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlaps3D', coordinate='lidar'),
pos_iou_thr=0.55,
neg_iou_thr=0.55,
min_pos_iou=0.55,
ignore_iof_thr=-1)
],
sampler=dict(
type='IoUNegPiecewiseSampler',
num=128,
pos_fraction=0.55,
neg_piece_fractions=[0.8, 0.2],
neg_iou_piece_thrs=[0.55, 0.1],
neg_pos_ub=-1,
add_gt_as_proposals=False,
return_iou=True),
cls_pos_thr=0.75,
cls_neg_thr=0.25))
test_cfg = dict(
rpn=dict(
nms_pre=1024,
nms_post=100,
max_num=100,
nms_thr=0.7,
score_thr=0,
use_rotate_nms=True),
rcnn=dict(
use_rotate_nms=True, use_raw_score=True, nms_thr=0.01, score_thr=0.3))
loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1)
],
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=9000,
nms_post=512,
max_num=512,
nms_thr=0.8,
score_thr=0,
use_rotate_nms=False),
rcnn=dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(
type='BboxOverlaps3D', coordinate='lidar'),
pos_iou_thr=0.55,
neg_iou_thr=0.55,
min_pos_iou=0.55,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(
type='BboxOverlaps3D', coordinate='lidar'),
pos_iou_thr=0.55,
neg_iou_thr=0.55,
min_pos_iou=0.55,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(
type='BboxOverlaps3D', coordinate='lidar'),
pos_iou_thr=0.55,
neg_iou_thr=0.55,
min_pos_iou=0.55,
ignore_iof_thr=-1)
],
sampler=dict(
type='IoUNegPiecewiseSampler',
num=128,
pos_fraction=0.55,
neg_piece_fractions=[0.8, 0.2],
neg_iou_piece_thrs=[0.55, 0.1],
neg_pos_ub=-1,
add_gt_as_proposals=False,
return_iou=True),
cls_pos_thr=0.75,
cls_neg_thr=0.25)),
test_cfg=dict(
rpn=dict(
nms_pre=1024,
nms_post=100,
max_num=100,
nms_thr=0.7,
score_thr=0,
use_rotate_nms=True),
rcnn=dict(
use_rotate_nms=True,
use_raw_score=True,
nms_thr=0.01,
score_thr=0.3)))
# dataset settings
dataset_type = 'KittiDataset'
......
......@@ -50,27 +50,27 @@ model = dict(
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)))
# model training and testing settings
train_cfg = dict(
assigner=dict(
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
allowed_border=0,
pos_weight=-1,
debug=False)
test_cfg = dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50)
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)),
# model training and testing settings
train_cfg=dict(
assigner=dict(
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
allowed_border=0,
pos_weight=-1,
debug=False),
test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50))
# dataset settings
dataset_type = 'KittiDataset'
......
......@@ -63,43 +63,42 @@ model = dict(
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2),
),
)
# model training and testing settings
train_cfg = dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
],
allowed_border=0,
pos_weight=-1,
debug=False)
test_cfg = dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50)
# model training and testing settings
train_cfg=dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
],
allowed_border=0,
pos_weight=-1,
debug=False),
test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50))
# dataset settings
dataset_type = 'KittiDataset'
......
......@@ -52,43 +52,43 @@ model = dict(
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)))
# model training and testing settings
train_cfg = dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
],
allowed_border=0,
pos_weight=-1,
debug=False)
test_cfg = dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50)
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)),
# model training and testing settings
train_cfg=dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
],
allowed_border=0,
pos_weight=-1,
debug=False),
test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50))
# dataset settings
dataset_type = 'KittiDataset'
......
......@@ -47,10 +47,11 @@ For example, we change `centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic
_base_ = './centerpoint_0075voxel_second_secfpn_circlenms' \
'_4x8_cyclic_20e_nus.py'
test_cfg = dict(
pts=dict(
use_rotate_nms=True,
max_num=83))
model = dict(
test_cfg=dict(
pts=dict(
use_rotate_nms=True,
max_num=83)))
point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0]
file_client_args = dict(backend='disk')
......
......@@ -16,16 +16,14 @@ model = dict(
pts_middle_encoder=dict(sparse_shape=[41, 1440, 1440]),
pts_bbox_head=dict(
bbox_coder=dict(
voxel_size=voxel_size[:2], pc_range=point_cloud_range[:2])))
train_cfg = dict(
pts=dict(
grid_size=[1440, 1440, 40],
voxel_size=voxel_size,
point_cloud_range=point_cloud_range))
test_cfg = dict(
pts=dict(voxel_size=voxel_size[:2], pc_range=point_cloud_range[:2]))
voxel_size=voxel_size[:2], pc_range=point_cloud_range[:2])),
train_cfg=dict(
pts=dict(
grid_size=[1440, 1440, 40],
voxel_size=voxel_size,
point_cloud_range=point_cloud_range)),
test_cfg=dict(
pts=dict(voxel_size=voxel_size[:2], pc_range=point_cloud_range[:2])))
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment