Unverified Commit 96cab60d authored by Yuefeng Wu's avatar Yuefeng Wu Committed by GitHub
Browse files

[Fix]: fix multi-batch show in detectors (#120)

parent 1cd50481
......@@ -48,8 +48,8 @@ class Base3DDetector(BaseDetector):
Note this setting will change the expected inputs. When
`return_loss=True`, img and img_metas are single-nested (i.e.
torch.Tensor and list[dict]), and when `resturn_loss=False`, img
and img_metas should be double nested (i.e. list[torch.Tensor],
torch.Tensor and list[dict]), and when `resturn_loss=False`, img and
img_metas should be double nested (i.e. list[torch.Tensor],
list[list[dict]]), with the outer list indicating test time
augmentations.
"""
......@@ -62,42 +62,48 @@ class Base3DDetector(BaseDetector):
"""Results visualization.
Args:
data (dict): Input points and the information of the sample.
result (dict): Prediction results.
data (list[dict]): Input points and the information of the sample.
result (list[dict]): Prediction results.
out_dir (str): Output directory of visualization result.
"""
if isinstance(data['points'][0], DC):
points = data['points'][0]._data[0][0].numpy()
elif mmcv.is_list_of(data['points'][0], torch.Tensor):
points = data['points'][0][0]
else:
ValueError(f"Unsupported data type {type(data['points'][0])} "
f'for visualization!')
if isinstance(data['img_metas'][0], DC):
pts_filename = data['img_metas'][0]._data[0][0]['pts_filename']
box_mode_3d = data['img_metas'][0]._data[0][0]['box_mode_3d']
elif mmcv.is_list_of(data['img_metas'][0], dict):
pts_filename = data['img_metas'][0][0]['pts_filename']
box_mode_3d = data['img_metas'][0][0]['box_mode_3d']
else:
ValueError(f"Unsupported data type {type(data['img_metas'][0])} "
f'for visualization!')
file_name = osp.split(pts_filename)[-1].split('.')[0]
for batch_id in range(len(result)):
if isinstance(data['points'][0], DC):
points = data['points'][0]._data[0][batch_id].numpy()
elif mmcv.is_list_of(data['points'][0], torch.Tensor):
points = data['points'][0][batch_id]
else:
ValueError(f"Unsupported data type {type(data['points'][0])} "
f'for visualization!')
if isinstance(data['img_metas'][0], DC):
pts_filename = data['img_metas'][0]._data[0][batch_id][
'pts_filename']
box_mode_3d = data['img_metas'][0]._data[0][batch_id][
'box_mode_3d']
elif mmcv.is_list_of(data['img_metas'][0], dict):
pts_filename = data['img_metas'][0][batch_id]['pts_filename']
box_mode_3d = data['img_metas'][0][batch_id]['box_mode_3d']
else:
ValueError(
f"Unsupported data type {type(data['img_metas'][0])} "
f'for visualization!')
file_name = osp.split(pts_filename)[-1].split('.')[0]
assert out_dir is not None, 'Expect out_dir, got none.'
assert out_dir is not None, 'Expect out_dir, got none.'
pred_bboxes = copy.deepcopy(result['boxes_3d'].tensor.numpy())
# for now we convert points into depth mode
if box_mode_3d == Box3DMode.DEPTH:
pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
elif box_mode_3d == Box3DMode.CAM or box_mode_3d == Box3DMode.LIDAR:
points = points[..., [1, 0, 2]]
points[..., 0] *= -1
pred_bboxes = Box3DMode.convert(pred_bboxes, box_mode_3d,
Box3DMode.DEPTH)
pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
else:
ValueError(
f'Unsupported box_mode_3d {box_mode_3d} for convertion!')
pred_bboxes = copy.deepcopy(
result[batch_id]['boxes_3d'].tensor.numpy())
# for now we convert points into depth mode
if box_mode_3d == Box3DMode.DEPTH:
pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
elif (box_mode_3d == Box3DMode.CAM) or (box_mode_3d
== Box3DMode.LIDAR):
points = points[..., [1, 0, 2]]
points[..., 0] *= -1
pred_bboxes = Box3DMode.convert(pred_bboxes, box_mode_3d,
Box3DMode.DEPTH)
pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
else:
ValueError(
f'Unsupported box_mode_3d {box_mode_3d} for convertion!')
show_result(points, None, pred_bboxes, out_dir, file_name)
show_result(points, None, pred_bboxes, out_dir, file_name)
import copy
import mmcv
import torch
from mmcv.parallel import DataContainer as DC
......@@ -454,37 +455,43 @@ class MVXTwoStageDetector(Base3DDetector):
result (dict): Prediction results.
out_dir (str): Output directory of visualization result.
"""
if isinstance(data['points'][0], DC):
points = data['points'][0]._data[0][0].numpy()
elif mmcv.is_list_of(data['points'][0], torch.Tensor):
points = data['points'][0][0]
else:
ValueError(f"Unsupported data type {type(data['points'][0])} "
f'for visualization!')
if isinstance(data['img_metas'][0], DC):
pts_filename = data['img_metas'][0]._data[0][0]['pts_filename']
box_mode_3d = data['img_metas'][0]._data[0][0]['box_mode_3d']
elif mmcv.is_list_of(data['img_metas'][0], dict):
pts_filename = data['img_metas'][0][0]['pts_filename']
box_mode_3d = data['img_metas'][0][0]['box_mode_3d']
else:
ValueError(f"Unsupported data type {type(data['img_metas'][0])} "
f'for visualization!')
file_name = osp.split(pts_filename)[-1].split('.')[0]
assert out_dir is not None, 'Expect out_dir, got none.'
inds = result['pts_bbox']['scores_3d'] > 0.1
pred_bboxes = result['pts_bbox']['boxes_3d'][inds].tensor.numpy()
# for now we convert points into depth mode
if box_mode_3d == Box3DMode.DEPTH:
pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
elif box_mode_3d == Box3DMode.CAM or box_mode_3d == Box3DMode.LIDAR:
points = points[..., [1, 0, 2]]
points[..., 0] *= -1
pred_bboxes = Box3DMode.convert(pred_bboxes, box_mode_3d,
Box3DMode.DEPTH)
pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
else:
ValueError(
f'Unsupported box_mode_3d {box_mode_3d} for convertion!')
show_result(points, None, pred_bboxes, out_dir, file_name)
for batch_id in range(len(result)):
if isinstance(data['points'][0], DC):
points = data['points'][0]._data[0][batch_id].numpy()
elif mmcv.is_list_of(data['points'][0], torch.Tensor):
points = data['points'][0][batch_id]
else:
ValueError(f"Unsupported data type {type(data['points'][0])} "
f'for visualization!')
if isinstance(data['img_metas'][0], DC):
pts_filename = data['img_metas'][0]._data[0][batch_id][
'pts_filename']
box_mode_3d = data['img_metas'][0]._data[0][batch_id][
'box_mode_3d']
elif mmcv.is_list_of(data['img_metas'][0], dict):
pts_filename = data['img_metas'][0][batch_id]['pts_filename']
box_mode_3d = data['img_metas'][0][batch_id]['box_mode_3d']
else:
ValueError(
f"Unsupported data type {type(data['img_metas'][0])} "
f'for visualization!')
file_name = osp.split(pts_filename)[-1].split('.')[0]
assert out_dir is not None, 'Expect out_dir, got none.'
inds = result[batch_id]['pts_bbox']['scores_3d'] > 0.1
pred_bboxes = copy.deepcopy(
result[batch_id]['pts_bbox']['boxes_3d'][inds].tensor.numpy())
# for now we convert points into depth mode
if box_mode_3d == Box3DMode.DEPTH:
pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
elif (box_mode_3d == Box3DMode.CAM) or (box_mode_3d
== Box3DMode.LIDAR):
points = points[..., [1, 0, 2]]
points[..., 0] *= -1
pred_bboxes = Box3DMode.convert(pred_bboxes, box_mode_3d,
Box3DMode.DEPTH)
pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
else:
ValueError(
f'Unsupported box_mode_3d {box_mode_3d} for convertion!')
show_result(points, None, pred_bboxes, out_dir, file_name)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment