Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
90602f7e
Commit
90602f7e
authored
May 13, 2020
by
liyinhao
Browse files
change gt_labels to gt_labels_3d
parent
7d68f829
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
26 additions
and
25 deletions
+26
-25
tests/test_pipeline/test_indoor_loading.py
tests/test_pipeline/test_indoor_loading.py
+9
-9
tests/test_pipeline/test_indoor_pipeline.py
tests/test_pipeline/test_indoor_pipeline.py
+17
-16
No files found.
tests/test_pipeline/test_indoor_loading.py
View file @
90602f7e
...
...
@@ -39,15 +39,15 @@ def test_load_annotations3D():
sunrgbd_info
=
mmcv
.
load
(
'./tests/data/sunrgbd/sunrgbd_infos.pkl'
)[
0
]
if
sunrgbd_info
[
'annos'
][
'gt_num'
]
!=
0
:
sunrgbd_gt_bboxes_3d
=
sunrgbd_info
[
'annos'
][
'gt_boxes_upright_depth'
]
sunrgbd_gt_labels
=
sunrgbd_info
[
'annos'
][
'class'
]
sunrgbd_gt_bboxes_3d_mask
=
np
.
ones_like
(
sunrgbd_gt_labels
).
astype
(
sunrgbd_gt_labels
_3d
=
sunrgbd_info
[
'annos'
][
'class'
]
sunrgbd_gt_bboxes_3d_mask
=
np
.
ones_like
(
sunrgbd_gt_labels
_3d
).
astype
(
np
.
bool
)
else
:
sunrgbd_gt_bboxes_3d
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
sunrgbd_gt_labels
=
np
.
zeros
((
1
,
))
sunrgbd_gt_labels
_3d
=
np
.
zeros
((
1
,
))
sunrgbd_gt_bboxes_3d_mask
=
np
.
zeros
((
1
,
))
assert
sunrgbd_gt_bboxes_3d
.
shape
==
(
3
,
7
)
assert
sunrgbd_gt_labels
.
shape
==
(
3
,
)
assert
sunrgbd_gt_labels
_3d
.
shape
==
(
3
,
)
assert
sunrgbd_gt_bboxes_3d_mask
.
shape
==
(
3
,
)
scannet_info
=
mmcv
.
load
(
'./tests/data/scannet/scannet_infos.pkl'
)[
0
]
...
...
@@ -56,12 +56,12 @@ def test_load_annotations3D():
data_path
=
'./tests/data/scannet/scannet_train_instance_data'
if
scannet_info
[
'annos'
][
'gt_num'
]
!=
0
:
scannet_gt_bboxes_3d
=
scannet_info
[
'annos'
][
'gt_boxes_upright_depth'
]
scannet_gt_labels
=
scannet_info
[
'annos'
][
'class'
]
scannet_gt_bboxes_3d_mask
=
np
.
ones_like
(
scannet_gt_labels
).
astype
(
scannet_gt_labels
_3d
=
scannet_info
[
'annos'
][
'class'
]
scannet_gt_bboxes_3d_mask
=
np
.
ones_like
(
scannet_gt_labels
_3d
).
astype
(
np
.
bool
)
else
:
scannet_gt_bboxes_3d
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
scannet_gt_labels
=
np
.
zeros
((
1
,
))
scannet_gt_labels
_3d
=
np
.
zeros
((
1
,
))
scannet_gt_bboxes_3d_mask
=
np
.
zeros
((
1
,
)).
astype
(
np
.
bool
)
scan_name
=
scannet_info
[
'point_cloud'
][
'lidar_idx'
]
scannet_results
[
'pts_instance_mask_path'
]
=
osp
.
join
(
...
...
@@ -69,11 +69,11 @@ def test_load_annotations3D():
scannet_results
[
'pts_semantic_mask_path'
]
=
osp
.
join
(
data_path
,
f
'
{
scan_name
}
_sem_label.npy'
)
scannet_results
[
'gt_bboxes_3d'
]
=
scannet_gt_bboxes_3d
scannet_results
[
'gt_labels'
]
=
scannet_gt_labels
scannet_results
[
'gt_labels
_3d
'
]
=
scannet_gt_labels
_3d
scannet_results
[
'gt_bboxes_3d_mask'
]
=
scannet_gt_bboxes_3d_mask
scannet_results
=
scannet_load_annotations3D
(
scannet_results
)
scannet_gt_boxes
=
scannet_results
[
'gt_bboxes_3d'
]
scannet_gt_lbaels
=
scannet_results
[
'gt_labels'
]
scannet_gt_lbaels
=
scannet_results
[
'gt_labels
_3d
'
]
scannet_gt_boxes_mask
=
scannet_results
[
'gt_bboxes_3d_mask'
]
scannet_pts_instance_mask
=
scannet_results
[
'pts_instance_mask'
]
scannet_pts_semantic_mask
=
scannet_results
[
'pts_semantic_mask'
]
...
...
tests/test_pipeline/test_indoor_pipeline.py
View file @
90602f7e
...
...
@@ -31,7 +31,7 @@ def test_scannet_pipeline():
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels'
,
'pts_semantic_mask'
,
'points'
,
'gt_bboxes_3d'
,
'gt_labels
_3d
'
,
'pts_semantic_mask'
,
'pts_instance_mask'
]),
]
...
...
@@ -44,12 +44,12 @@ def test_scannet_pipeline():
results
[
'pts_filename'
]
=
osp
.
join
(
data_path
,
f
'
{
scan_name
}
_vert.npy'
)
if
info
[
'annos'
][
'gt_num'
]
!=
0
:
scannet_gt_bboxes_3d
=
info
[
'annos'
][
'gt_boxes_upright_depth'
]
scannet_gt_labels
=
info
[
'annos'
][
'class'
]
scannet_gt_bboxes_3d_mask
=
np
.
ones_like
(
scannet_gt_labels
).
astype
(
scannet_gt_labels
_3d
=
info
[
'annos'
][
'class'
]
scannet_gt_bboxes_3d_mask
=
np
.
ones_like
(
scannet_gt_labels
_3d
).
astype
(
np
.
bool
)
else
:
scannet_gt_bboxes_3d
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
scannet_gt_labels
=
np
.
zeros
((
1
,
))
scannet_gt_labels
_3d
=
np
.
zeros
((
1
,
))
scannet_gt_bboxes_3d_mask
=
np
.
zeros
((
1
,
)).
astype
(
np
.
bool
)
scan_name
=
info
[
'point_cloud'
][
'lidar_idx'
]
...
...
@@ -58,14 +58,14 @@ def test_scannet_pipeline():
results
[
'pts_semantic_mask_path'
]
=
osp
.
join
(
data_path
,
f
'
{
scan_name
}
_sem_label.npy'
)
results
[
'gt_bboxes_3d'
]
=
scannet_gt_bboxes_3d
results
[
'gt_labels'
]
=
scannet_gt_labels
results
[
'gt_labels
_3d
'
]
=
scannet_gt_labels
_3d
results
[
'gt_bboxes_3d_mask'
]
=
scannet_gt_bboxes_3d_mask
results
=
pipeline
(
results
)
points
=
results
[
'points'
].
_data
gt_bboxes_3d
=
results
[
'gt_bboxes_3d'
].
_data
gt_labels
=
results
[
'gt_labels'
].
_data
gt_labels
_3d
=
results
[
'gt_labels
_3d
'
].
_data
pts_semantic_mask
=
results
[
'pts_semantic_mask'
]
pts_instance_mask
=
results
[
'pts_instance_mask'
]
expected_points
=
np
.
array
(
...
...
@@ -81,7 +81,7 @@ def test_scannet_pipeline():
[
-
2.930457
,
-
2.4856408
,
0.9722377
,
0.6270478
,
1.8461524
,
0.28697443
],
[
3.3114715
,
-
0.00476722
,
1.0712197
,
0.46191898
,
3.8605113
,
2.1603441
]
])
expected_gt_labels
=
np
.
array
([
expected_gt_labels
_3d
=
np
.
array
([
6
,
6
,
4
,
9
,
11
,
11
,
10
,
0
,
15
,
17
,
17
,
17
,
3
,
12
,
4
,
4
,
14
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
5
,
5
,
5
])
...
...
@@ -89,7 +89,7 @@ def test_scannet_pipeline():
expected_pts_instance_mask
=
np
.
array
([
44
,
22
,
10
,
10
,
57
])
assert
np
.
allclose
(
points
,
expected_points
)
assert
np
.
allclose
(
gt_bboxes_3d
[:
5
,
:],
expected_gt_bboxes_3d
)
assert
np
.
all
(
gt_labels
.
numpy
()
==
expected_gt_labels
)
assert
np
.
all
(
gt_labels
_3d
.
numpy
()
==
expected_gt_labels
_3d
)
assert
np
.
all
(
pts_semantic_mask
==
expected_pts_semantic_mask
)
assert
np
.
all
(
pts_instance_mask
==
expected_pts_instance_mask
)
...
...
@@ -112,7 +112,8 @@ def test_sunrgbd_pipeline():
scale_range
=
[
0.85
,
1.15
]),
dict
(
type
=
'IndoorPointSample'
,
num_points
=
5
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels'
]),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
]),
]
pipeline
=
Compose
(
pipelines
)
results
=
dict
()
...
...
@@ -124,20 +125,20 @@ def test_sunrgbd_pipeline():
if
info
[
'annos'
][
'gt_num'
]
!=
0
:
gt_bboxes_3d
=
info
[
'annos'
][
'gt_boxes_upright_depth'
]
gt_labels
=
info
[
'annos'
][
'class'
]
gt_bboxes_3d_mask
=
np
.
ones_like
(
gt_labels
).
astype
(
np
.
bool
)
gt_labels
_3d
=
info
[
'annos'
][
'class'
]
gt_bboxes_3d_mask
=
np
.
ones_like
(
gt_labels
_3d
).
astype
(
np
.
bool
)
else
:
gt_bboxes_3d
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
gt_labels
=
np
.
zeros
((
1
,
))
gt_labels
_3d
=
np
.
zeros
((
1
,
))
gt_bboxes_3d_mask
=
np
.
zeros
((
1
,
)).
astype
(
np
.
bool
)
results
[
'gt_bboxes_3d'
]
=
gt_bboxes_3d
results
[
'gt_labels'
]
=
gt_labels
results
[
'gt_labels
_3d
'
]
=
gt_labels
_3d
results
[
'gt_bboxes_3d_mask'
]
=
gt_bboxes_3d_mask
results
=
pipeline
(
results
)
points
=
results
[
'points'
].
_data
gt_bboxes_3d
=
results
[
'gt_bboxes_3d'
].
_data
gt_labels
=
results
[
'gt_labels'
].
_data
gt_labels
_3d
=
results
[
'gt_labels
_3d
'
].
_data
expected_points
=
np
.
array
(
[[
0.6570105
,
1.5538014
,
0.24514851
,
1.0165423
],
[
0.656101
,
1.558591
,
0.21755838
,
0.98895216
],
...
...
@@ -158,7 +159,7 @@ def test_sunrgbd_pipeline():
0.7347852
,
1.6113238
,
2.1694272
,
2.81404
]])
expected_gt_labels
=
np
.
array
([
0
,
7
,
6
])
expected_gt_labels
_3d
=
np
.
array
([
0
,
7
,
6
])
assert
np
.
allclose
(
gt_bboxes_3d
,
expected_gt_bboxes_3d
)
assert
np
.
allclose
(
gt_labels
.
flatten
(),
expected_gt_labels
)
assert
np
.
allclose
(
gt_labels
_3d
.
flatten
(),
expected_gt_labels
_3d
)
assert
np
.
allclose
(
points
,
expected_points
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment