Unverified Commit 86ef23d4 authored by Wenhao Wu's avatar Wenhao Wu Committed by GitHub
Browse files

[Feature] Adding PWC metafile (#485)

* [Feature] Adding PWC metafile

* fix url in nuimages

* removing inaccurate training time

* refine pwc index

* refine training resources

* removing empty metric of metafile in regnet

* removing 'Focal_Loss' and 'SECOND' from Architecture
parent b00d3dca
Collections:
- Name: 3DSSD
Metadata:
Training Data: KITTI
Training Techniques:
- AdamW
Training Resources: 4x TITAN X
Architecture:
- PointNet++
Paper: https://arxiv.org/abs/2002.10187
README: configs/3dssd/README.md
Models:
- Name: 3dssd_kitti-3d-car
In Collection: 3DSSD
Config: configs/3dssd/3dssd_kitti-3d-car.py
Metadata:
Training Memory (GB): 4.7
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 78.39
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/3dssd/3dssd_kitti-3d-car_20210324_122002-07e9a19b.pth
Collections:
- Name: CenterPoint
Metadata:
Training Data: nuScenes
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- Hard Voxelization
Paper: https://arxiv.org/abs/2006.11275
README: configs/centerpoint/README.md
Models:
- Name: centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus
In Collection: CenterPoint
Config: configs/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py
Metadata:
Training Memory (GB): 4.9
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 56.19
NDS: 64.43
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20201001_135205-5db91e00.pth
- Name: centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus
In Collection: CenterPoint
Config: configs/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py
Metadata:
Training Memory (GB): 5.2
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 56.34
NDS: 64.81
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20201004_075317-26d8176c.pth
- Name: centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus
In Collection: CenterPoint
Config: configs/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py
Metadata:
Training Memory (GB): 7.8
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 57.34
NDS: 65.23
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20200925_230905-358fbe3b.pth
- Name: centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus
In Collection: CenterPoint
Config: configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py
Metadata:
Training Memory (GB): 8.5
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 57.27
NDS: 65.58
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20200930_201619-67c8496f.pth
- Name: centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus
In Collection: CenterPoint
Config: configs/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus.py
Metadata:
Training Memory (GB): 4.4
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 49.07
NDS: 59.66
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus_20201004_170716-a134a233.pth
- Name: centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus
In Collection: CenterPoint
Config: configs/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus.py
Metadata:
Training Memory (GB): 4.6
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 48.8
NDS: 59.67
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus_20200930_103722-3bb135f2.pth
Collections:
- Name: Dynamic Voxelization
Metadata:
Training Data: KITTI
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- Dynamic Voxelization
Paper: https://arxiv.org/abs/1910.06528
README: configs/dynamic_voxelization/README.md
Models:
- Name: dv_second_secfpn_6x8_80e_kitti-3d-car
In Collection: Dynamic Voxelization
Config: configs/dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py
Metadata:
Training Memory (GB): 5.5
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 78.83
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car/dv_second_secfpn_6x8_80e_kitti-3d-car_20200620_235228-ac2c1c0c.pth
- Name: dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class
In Collection: Dynamic Voxelization
Config: configs/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py
Metadata:
Training Memory (GB): 5.5
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 65.10
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class_20200620_231010-6aa607d3.pth
- Name: dv_pointpillars_secfpn_6x8_160e_kitti-3d-car
In Collection: Dynamic Voxelization
Config: configs/dynamic_voxelization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py
Metadata:
Training Memory (GB): 4.7
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 77.76
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/dynamic_voxelization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20200620_230844-ee7b75c9.pth
Collections:
- Name: FP16
Metadata:
Training Techniques:
- AdamW
- Mixed Precision Training
Training Resources: 8x TITAN Xp
Architecture:
- Hard Voxelization
Paper:
- https://www.mdpi.com/1424-8220/18/10/3337
- https://arxiv.org/abs/1812.05784
README: configs/fp16/README.md
Models:
- Name: hv_second_secfpn_fp16_6x8_80e_kitti-3d-car
In Collection: FP16
Config: configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py
Metadata:
Training Data: KITTI
Training Memory (GB): 2.9
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
FP16 mAP: 78.72
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth
- Name: hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class
In Collection: FP16
Config: configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py
Metadata:
Training Data: KITTI
Training Memory (GB): 2.9
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
FP16 mAP: 67.4
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth
- Name: hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d
In Collection: FP16
Config: configs/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 8.37
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
FP16 mAP: 35.19
FP16 NDS: 50.27
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626-c3f0483e.pth
- Name: hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d
In Collection: FP16
Config: configs/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 8.40
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
FP16 mAP: 39.26
FP16 NDS: 53.26
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719-269f9dd6.pth
Collections:
- Name: FreeAnchor
Metadata:
Training Data: nuScenes
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- Hard Voxelization
- Free Anchor
Paper: https://arxiv.org/abs/1909.02466
README: configs/free_anchor/README.md
Models:
- Name: hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d
In Collection: FreeAnchor
Config: free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py
Metadata:
Training Memory (GB): 16.2
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 43.7
NDS: 55.3
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20200628_210537-09d359fc.pth
- Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py
Metadata:
Training Memory (GB): 17.7
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 47.9
NDS: 58.6
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20200629_050311-a334765d.pth
- Name: hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py
Metadata:
Training Memory (GB): 24.3
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 51.2
NDS: 60.8
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20200629_105446-6ffa59cb.pth
- Name: hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py
Metadata:
Training Memory (GB): 24.3
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 53.0
NDS: 62.2
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20200701_201531-036f7de3.pth
- Name: hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py
Metadata:
Training Memory (GB): 29.5
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 52.2
NDS: 62.0
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20200629_055854-658125b0.pth
- Name: hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py
Metadata:
Training Memory (GB): 29.5
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 55.09
NDS: 63.5
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20200629_181452-297fdc66.pth
Collections:
- Name: H3DNet
Metadata:
Training Data: ScanNet
Training Techniques:
- AdamW
Training Resources: 8x GeForce GTX 1080 Ti
Architecture:
Paper: https://arxiv.org/abs/2006.05682
README: configs/h3dnet/README.md
Models:
- Name: h3dnet_3x8_scannet-3d-18class
In Collection: H3DNet
Config: configs/h3dnet/h3dnet_3x8_scannet-3d-18class.py
Metadata:
Training Memory (GB): 7.9
Results:
- Task: 3D Object Detection
Dataset: ScanNet
Metrics:
AP@0.25: 66.43
AP@0.5: 48.01
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/h3dnet/h3dnet_scannet-3d-18class/h3dnet_scannet-3d-18class_20200830_000136-02e36246.pth
Collections:
- Name: ImVoteNet
Metadata:
Training Data: SUNRGBD
Training Techniques:
- AdamW
Training Resources: 8x TITAN Xp
Architecture:
- Faster R-CNN
- VoteNet
- Feature Pyramid Network
Paper: https://arxiv.org/abs/2001.10692
README: configs/imvotenet/README.md
Models:
- Name: imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class
In Collection: ImVoteNet
Config: configs/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class.py
Metadata:
Training Memory (GB): 2.1
Results:
- Task: Object Detection
Dataset: SUNRGBD-2D
Metrics:
AP@0.5: 62.70
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class_20210323_173222-cad62aeb.pth
- Name: imvotenet_stage2_16x8_sunrgbd-3d-10class
In Collection: ImVoteNet
Config: configs/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class.py
Metadata:
Training Memory (GB): 9.4
Results:
- Task: 3D Object Detection
Dataset: SUNRGBD-3D
Metrics:
AP@0.25: 64.04
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class/imvotenet_stage2_16x8_sunrgbd-3d-10class_20210323_184021-d44dcb66.pth
Collections:
- Name: MVX-Net
Metadata:
Training Data: KITTI
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- Feature Pyramid Network
- Dynamic Voxelization
Paper: https://arxiv.org/abs/1904.01649
README: configs/mvxnet/README.md
Models:
- Name: dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class
In Collection: MVX-Net
Config: configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py
Metadata:
Training Memory (GB): 6.7
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 63.0
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20200621_003904-10140f2d.pth
...@@ -37,7 +37,7 @@ We report Mask R-CNN and Cascade Mask R-CNN results on nuimages. ...@@ -37,7 +37,7 @@ We report Mask R-CNN and Cascade Mask R-CNN results on nuimages.
| Mask R-CNN| [R-50](./mask_rcnn_r50_fpn_coco-2x_1x_nuim.py) |IN+COCO-2x|1x|7.4|49.7|40.5|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20201008_195238-b1742a60.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20201008_195238.log.json)| | Mask R-CNN| [R-50](./mask_rcnn_r50_fpn_coco-2x_1x_nuim.py) |IN+COCO-2x|1x|7.4|49.7|40.5|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20201008_195238-b1742a60.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20201008_195238.log.json)|
| Mask R-CNN| [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_1x_nuim.py) |IN|1x|7.0|47.7|38.2|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_1x_nuim/) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_1x_nuim/)| | Mask R-CNN| [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_1x_nuim.py) |IN|1x|7.0|47.7|38.2|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_1x_nuim/) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_1x_nuim/)|
| Mask R-CNN| [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py) |IN+COCO-3x|1x|7.0|49.9|40.8|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim_20201008_195305-661a992e.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim_20201008_195305.log.json)| | Mask R-CNN| [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py) |IN+COCO-3x|1x|7.0|49.9|40.8|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim_20201008_195305-661a992e.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim_20201008_195305.log.json)|
| Mask R-CNN| [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py) |IN+COCO-3x|20e|7.0|50.6|41.3|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim_20201009_125002-5529442c.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim_20201009_125002.log.json)| | Mask R-CNN| [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim.py) |IN+COCO-3x|20e|7.0|50.6|41.3|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim_20201009_125002-5529442c.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim_20201009_125002.log.json)|
| Mask R-CNN| [R-101](./mask_rcnn_r101_fpn_1x_nuim.py) |IN|1x|10.9|48.9|39.1|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r101_fpn_1x_nuim/mask_rcnn_r101_fpn_1x_nuim_20201024_134803-65c7623a.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r101_fpn_1x_nuim/mask_rcnn_r101_fpn_1x_nuim_20201024_134803.log.json)| | Mask R-CNN| [R-101](./mask_rcnn_r101_fpn_1x_nuim.py) |IN|1x|10.9|48.9|39.1|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r101_fpn_1x_nuim/mask_rcnn_r101_fpn_1x_nuim_20201024_134803-65c7623a.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r101_fpn_1x_nuim/mask_rcnn_r101_fpn_1x_nuim_20201024_134803.log.json)|
| Mask R-CNN| [X-101_32x4d](./mask_rcnn_x101_32x4d_fpn_1x_nuim.py) |IN|1x|13.3|50.4|40.5|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_x101_32x4d_fpn_1x_nuim/mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135741-b699ab37.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_x101_32x4d_fpn_1x_nuim/mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135741.log.json)| | Mask R-CNN| [X-101_32x4d](./mask_rcnn_x101_32x4d_fpn_1x_nuim.py) |IN|1x|13.3|50.4|40.5|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_x101_32x4d_fpn_1x_nuim/mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135741-b699ab37.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_x101_32x4d_fpn_1x_nuim/mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135741.log.json)|
| Cascade Mask R-CNN| [R-50](./cascade_mask_rcnn_r50_fpn_1x_nuim.py) |IN|1x|8.9|50.8|40.4|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_1x_nuim/cascade_mask_rcnn_r50_fpn_1x_nuim_20201008_195342-1147c036.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_1x_nuim/cascade_mask_rcnn_r50_fpn_1x_nuim_20201008_195342.log.json)| | Cascade Mask R-CNN| [R-50](./cascade_mask_rcnn_r50_fpn_1x_nuim.py) |IN|1x|8.9|50.8|40.4|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_1x_nuim/cascade_mask_rcnn_r50_fpn_1x_nuim_20201008_195342-1147c036.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_1x_nuim/cascade_mask_rcnn_r50_fpn_1x_nuim_20201008_195342.log.json)|
......
Collections:
- Name: Mask R-CNN
Metadata:
Training Data: nuImages
Training Techniques:
- SGD with Momentum
Architecture:
- RoI Align
- RPN
Paper:
- https://arxiv.org/abs/1703.06870
- https://arxiv.org/abs/1712.00726v1
README: configs/nuimages/README.md
Models:
- Name: mask_rcnn_r50_fpn_1x_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/mask_rcnn_r50_fpn_1x_nuim.py
Metadata:
Training Memory (GB): 7.4
Training Resources: 8x TITAN Xp
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 47.8
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 38.4
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_1x_nuim/mask_rcnn_r50_fpn_1x_nuim_20201008_195238-e99f5182.pth
- Name: mask_rcnn_r50_fpn_coco-2x_1x_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nuim.py
Metadata:
Training Memory (GB): 7.4
Training Resources: 8x TITAN Xp
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 49.7
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 40.5
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20201008_195238-b1742a60.pth
- Name: mask_rcnn_r50_caffe_fpn_1x_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/mask_rcnn_r50_caffe_fpn_1x_nuim.py
Metadata:
Training Memory (GB): 7.0
Training Resources: 8x TITAN Xp
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 47.7
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 38.2
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_1x_nuim/
- Name: mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py
Metadata:
Training Memory (GB): 7.0
Training Resources: 8x TITAN Xp
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 49.9
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 40.8
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim_20201008_195305-661a992e.pth
- Name: mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim.py
Metadata:
Training Memory (GB): 7.0
Training Resources: 8x TITAN Xp
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 50.6
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 41.3
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim_20201009_125002-5529442c.pth
- Name: mask_rcnn_r101_fpn_1x_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/mask_rcnn_r101_fpn_1x_nuim.py
Metadata:
Training Memory (GB): 10.9
Training Resources: 8x TITAN Xp
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 48.9
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 39.1
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r101_fpn_1x_nuim/mask_rcnn_r101_fpn_1x_nuim_20201024_134803-65c7623a.pth
- Name: mask_rcnn_x101_32x4d_fpn_1x_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/mask_rcnn_x101_32x4d_fpn_1x_nuim.py
Metadata:
Training Memory (GB): 13.3
Training Resources: 8x TITAN Xp
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 50.4
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 40.5
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_x101_32x4d_fpn_1x_nuim/mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135741-b699ab37.pth
- Name: cascade_mask_rcnn_r50_fpn_1x_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/cascade_mask_rcnn_r50_fpn_1x_nuim.py
Metadata:
Training Memory (GB): 8.9
Training Resources: 8x TITAN Xp
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 50.8
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 40.4
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_1x_nuim/cascade_mask_rcnn_r50_fpn_1x_nuim_20201008_195342-1147c036.pth
- Name: cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim.py
Metadata:
Training Memory (GB): 8.9
Training Resources: 8x TITAN Xp
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 52.8
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 42.2
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim_20201009_124158-ad0540e3.pth
- Name: cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim.py
Metadata:
Training Memory (GB): 8.9
Training Resources: 8x TITAN Xp
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 52.8
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 42.2
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim_20201009_124951-40963960.pth
- Name: cascade_mask_rcnn_r101_fpn_1x_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/cascade_mask_rcnn_r101_fpn_1x_nuim.py
Metadata:
Training Memory (GB): 12.5
Training Resources: 8x TITAN Xp
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 51.5
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 40.7
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r101_fpn_1x_nuim/cascade_mask_rcnn_r101_fpn_1x_nuim_20201024_134804-45215b1e.pth
- Name: cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim.py
Metadata:
Training Memory (GB): 14.9
Training Resources: 8x TITAN Xp
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 52.8
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 41.6
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135753-e0e49778.pth
- Name: htc_r50_fpn_coco-20e_1x_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/htc_r50_fpn_coco-20e_1x_nuim.py
Metadata:
Training Memory (GB): 11.6
Training Resources: 8x V100 GPUs
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 53.8
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 43.8
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_1x_nuim/htc_r50_fpn_coco-20e_1x_nuim_20201010_070203-0b53a65e.pth
- Name: htc_r50_fpn_coco-20e_20e_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/htc_r50_fpn_coco-20e_20e_nuim.py
Metadata:
Training Memory (GB): 11.6
Training Resources: 8x V100 GPUs
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 54.8
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 44.4
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_20e_nuim/htc_r50_fpn_coco-20e_20e_nuim_20201008_211415-d6c60a2c.pth
- Name: htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim
In Collection: Mask R-CNN
Config: configs/nuimages/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim.py
Metadata:
Training Memory (GB): 13.3
Training Resources: 8x V100 GPUs
Results:
- Task: Object Detection
Dataset: nuImages
Metrics:
Box AP: 57.3
- Task: Instance Segmentation
Dataset: nuImages
Metrics:
Mask AP: 46.4
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim_20201008_211222-0b16ac4b.pth
Collections:
- Name: Part-A^2
Metadata:
Training Data: KITTI
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- Sparse U-Net
Paper: https://arxiv.org/abs/1907.03670
README: configs/parta2/README.md
Models:
- Name: hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class
In Collection: Part-A^2
Config: configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py
Metadata:
Training Memory (GB): 4.1
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 67.9
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20200620_230724-a2672098.pth
- Name: hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car
In Collection: Part-A^2
Config: configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py
Metadata:
Training Memory (GB): 4.0
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 79.16
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20200620_230755-f2a38b9a.pth
Collections:
- Name: PointPillars
Metadata:
Training Techniques:
- AdamW
Architecture:
- Feature Pyramid Network
Paper: https://arxiv.org/abs/1812.05784
README: configs/pointpillars/README.md
Models:
- Name: hv_pointpillars_secfpn_6x8_160e_kitti-3d-car
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py
Metadata:
Training Data: KITTI
Training Memory (GB): 5.4
Training Resources: 8x V100 GPUs
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
AP: 77.1
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20200620_230614-77663cd6.pth
- Name: hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py
Metadata:
Training Data: KITTI
Training Memory (GB): 5.5
Training Resources: 8x V100 GPUs
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
AP: 59.5
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20200620_230421-aa0f3adb.pth
- Name: hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 16.4
Training Resources: 8x V100 GPUs
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 35.17
NDS: 49.7
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth
- Name: hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 16.4
Training Resources: 8x V100 GPUs
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 40.0
NDS: 53.3
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth
- Name: hv_pointpillars_secfpn_sbn-all_4x8_2x_lyft-3d
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_lyft-3d.py
Metadata:
Training Data: Lyft
Results:
- Task: 3D Object Detection
Dataset: Lyft
Metrics:
Private Score: 13.4
Public Score: 13.4
- Name: hv_pointpillars_fpn_sbn-all_4x8_2x_lyft-3d
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_lyft-3d.py
Metadata:
Training Data: Lyft
Results:
- Task: 3D Object Detection
Dataset: Lyft
Metrics:
Private Score: 14.0
Public Score: 14.2
- Name: hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car.py
Metadata:
Training Data: Waymo
Training Memory (GB): 7.76
Training Resources: 8x GeForce GTX 1080 Ti
Results:
- Task: 3D Object Detection
Dataset: Waymo
Metrics:
mAP@L1: 70.2
mAPH@L1: 69.6
mAP@L2: 62.6
mAPH@L2: 62.1
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car_20200901_204315-302fc3e7.pth
- Name: hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py
Metadata:
Training Data: Waymo
Training Memory (GB): 8.12
Training Resources: 8x GeForce GTX 1080 Ti
Results:
- Task: 3D Object Detection
Dataset: Waymo
Metrics:
mAP@L1: 64.7
mAPH@L1: 57.6
mAP@L2: 58.4
mAPH@L2: 52.1
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class_20200831_204144-d1a706b1.pth
- Name: hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car.py
Metadata:
Training Data: Waymo
Training Memory (GB): 7.76
Training Resources: 8x GeForce GTX 1080 Ti
Results:
- Task: 3D Object Detection
Dataset: Waymo
Metrics:
mAP@L1: 72.1
mAPH@L1: 71.5
mAP@L2: 63.6
mAPH@L2: 63.1
- Name: hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class.py
Metadata:
Training Data: Waymo
Training Memory (GB): 8.12
Training Resources: 8x GeForce GTX 1080 Ti
Results:
- Task: 3D Object Detection
Dataset: Waymo
Metrics:
mAP@L1: 68.8
mAPH@L1: 63.3
mAP@L2: 62.6
mAPH@L2: 57.6
Collections:
- Name: RegNetX
Metadata:
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- Faster R-CNN
- Hard Voxelization
Paper: https://arxiv.org/abs/2003.13678
README: configs/regnet/README.md
Models:
- Name: hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d
In Collection: RegNetX
Config: configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 16.4
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 41.2
NDS: 55.2
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth
- Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d
In Collection: RegNetX
Config: configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 17.3
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 44.8
NDS: 56.4
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239-c694dce7.pth
- Name: hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d
In Collection: RegNetX
Config: configs/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 24.0
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 48.2
NDS: 59.3
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311-dcd4e090.pth
- Name: hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_lyft-3d
In Collection: RegNetX
Config: configs/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_lyft-3d.py
Metadata:
Training Data: Lyft
Results:
- Task: 3D Object Detection
Dataset: Lyft
- Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_lyft-3d
In Collection: RegNetX
Config: configs/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_lyft-3d.py
Metadata:
Training Data: Lyft
Results:
- Task: 3D Object Detection
Dataset: Lyft
Metrics:
Private Score: 15.5
Public Score: 15.6
Collections:
- Name: SECOND
Metadata:
Training Techniques:
- AdamW
Architecture:
- Hard Voxelization
Paper: https://www.mdpi.com/1424-8220/18/10/3337
README: configs/second/README.md
Models:
- Name: hv_second_secfpn_6x8_80e_kitti-3d-car
In Collection: SECOND
Config: configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py
Metadata:
Training Data: KITTI
Training Memory (GB): 5.4
Training Resources: 8x V100 GPUs
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 79.07
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
- Name: hv_second_secfpn_6x8_80e_kitti-3d-3class
In Collection: SECOND
Config: configs/second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py
Metadata:
Training Data: KITTI
Training Memory (GB): 5.4
Training Resources: 8x V100 GPUs
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 64.41
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083a.pth
- Name: hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class
In Collection: SECOND
Config: configs/second/hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py
Metadata:
Training Data: Waymo
Training Memory (GB): 8.12
Training Resources: 8x GeForce GTX 1080 Ti
Results:
- Task: 3D Object Detection
Dataset: Waymo
Metrics:
mAP@L1: 65.3
mAPH@L1: 61.7
mAP@L2: 58.9
mAPH@L2: 55.7
Collections:
- Name: SSN
Metadata:
Training Techniques:
- AdamW
Training Resources: 8x GeForce GTX 1080 Ti
Architecture:
- Hard Voxelization
Paper: https://arxiv.org/abs/2004.02774
README: configs/ssn/README.md
Models:
- Name: hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d
In Collection: SSN
Config: configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 9.62
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 41.56
NDS: 54.83
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20201023_193737-5fda3f00.pth
- Name: hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d
In Collection: SSN
Config: configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 10.26
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 46.95
NDS: 58.24
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20201024_232447-7af3d8c8.pth
- Name: hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d
In Collection: SSN
Config: configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py
Metadata:
Training Data: Lyft
Training Memory (GB): 8.30
Results:
- Task: 3D Object Detection
Dataset: Lyft
Metrics:
Private Score: 17.4
Public Score: 17.5
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20201016_220844-3058d9fc.pth
- Name: hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d
In Collection: SSN
Config: configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py
Metadata:
Training Data: Lyft
Training Memory (GB): 9.98
Results:
- Task: 3D Object Detection
Dataset: Lyft
Metrics:
Private Score: 18.1
Public Score: 18.3
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_lyft-3d_20201025_213155-4532096c.pth
Collections:
- Name: VoteNet
Metadata:
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- PointNet++
Paper: https://arxiv.org/abs/1904.09664
README: configs/votenet/README.md
Models:
- Name: votenet_16x8_sunrgbd-3d-10class.py
In Collection: VoteNet
Config: configs/votenet/votenet_16x8_sunrgbd-3d-10class.py
Metadata:
Training Data: SUNRGBD
Training Memory (GB): 8.1
Results:
- Task: 3D Object Detection
Dataset: SUNRGBD
Metrics:
AP@0.25: 59.07
AP@0.5: 35.77
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20200620_230238-4483c0c0.pth
- Name: votenet_8x8_scannet-3d-18class.py
In Collection: VoteNet
Config: configs/votenet/votenet_8x8_scannet-3d-18class.py
Metadata:
Training Data: ScanNet
Training Memory (GB): 4.1
Results:
- Task: 3D Object Detection
Dataset: ScanNet
Metrics:
AP@0.25: 62.90
AP@0.5: 39.91
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth
- Name: votenet_iouloss_8x8_scannet-3d-18class
In Collection: VoteNet
Config: configs/votenet/votenet_iouloss_8x8_scannet-3d-18class.py
Metadata:
Training Data: ScanNet
Training Memory (GB): 4.1
Architecture:
- IoU Loss
Results:
- Task: 3D Object Detection
Dataset: ScanNet
Metrics:
AP@0.25: 63.81
AP@0.5: 44.21
Import:
- configs/3dssd/metafile.yml
- configs/centerpoint/metafile.yml
- configs/dynamic_voxelization/metafile.yml
- configs/fp16/metafile.yml
- configs/free_anchor/metafile.yml
- configs/h3dnet/metafile.yml
- configs/imvotenet/metafile.yml
- configs/mvxnet/metafile.yml
- configs/nuimages/metafile.yml
- configs/parta2/metafile.yml
- configs/pointpillars/metafile.yml
- configs/regnet/metafile.yml
- configs/second/metafile.yml
- configs/ssn/metafile.yml
- configs/votenet/metafile.yml
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment