Unverified Commit 7e221c14 authored by VVsssssk's avatar VVsssssk Committed by GitHub
Browse files

[Refactor] Add auto lr in cfg (#1807)

* add deploy.yaml

* add auto_scale_lr in cfg

* fix cfg
parent 9611c2d0
......@@ -22,3 +22,9 @@ param_scheduler = [
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=40, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)
......@@ -57,3 +57,9 @@ param_scheduler = [
train_cfg = dict(by_epoch=True, max_epochs=20, val_interval=20)
val_cfg = dict()
test_cfg = dict()
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (4 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=32)
......@@ -59,3 +59,9 @@ param_scheduler = [
train_cfg = dict(by_epoch=True, max_epochs=40, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (6 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=48)
......@@ -20,3 +20,9 @@ param_scheduler = [
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)
......@@ -28,3 +28,9 @@ param_scheduler = [
milestones=[20, 23],
gamma=0.1)
]
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (4 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=32)
......@@ -23,3 +23,9 @@ param_scheduler = [
milestones=[24, 32],
gamma=0.1)
]
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (4 GPUs) x (8 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=32)
......@@ -19,3 +19,9 @@ param_scheduler = [
train_cfg = dict(by_epoch=True, max_epochs=100)
val_cfg = dict(interval=1)
test_cfg = dict()
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (4 GPUs) x (32 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=128)
......@@ -19,3 +19,9 @@ param_scheduler = [
train_cfg = dict(by_epoch=True, max_epochs=150)
val_cfg = dict(interval=1)
test_cfg = dict()
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (8 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=64)
......@@ -19,3 +19,9 @@ param_scheduler = [
train_cfg = dict(by_epoch=True, max_epochs=200)
val_cfg = dict(interval=1)
test_cfg = dict()
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (2 GPUs) x (16 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=32)
......@@ -19,3 +19,9 @@ param_scheduler = [
train_cfg = dict(by_epoch=True, max_epochs=50)
val_cfg = dict(interval=1)
test_cfg = dict()
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (2 GPUs) x (16 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=32)
......@@ -67,3 +67,8 @@ default_hooks = dict(
logger=dict(type='LoggerHook', interval=30)
)
# yapf:enable
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (3 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=24)
......@@ -217,3 +217,8 @@ test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
# may also use your own pre-trained image branch
load_from = 'https://download.openmmlab.com/mmdetection3d/v0.1.0_models/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class_20210323_173222-cad62aeb.pth' # noqa
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (16 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=128)
......@@ -127,3 +127,9 @@ test_evaluator = val_evaluator
# Part-A2 uses a different learning rate from what SECOND uses.
optim_wrapper = dict(optimizer=dict(lr=0.001))
find_unused_parameters = True
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)
......@@ -94,3 +94,8 @@ log_config = dict(
dict(type='TensorboardLoggerHook')
])
# yapf:enable
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)
......@@ -3,3 +3,8 @@ _base_ = [
'../_base_/datasets/lyft-3d-range100.py',
'../_base_/schedules/schedule-2x.py', '../_base_/default_runtime.py'
]
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)
......@@ -3,3 +3,8 @@ _base_ = [
'../_base_/datasets/lyft-3d.py', '../_base_/schedules/schedule-2x.py',
'../_base_/default_runtime.py'
]
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)
......@@ -7,3 +7,8 @@ _base_ = [
# data settings
data = dict(train=dict(dataset=dict(load_interval=1)))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (16 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=32)
......@@ -35,3 +35,8 @@ model = dict(
code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
pos_weight=-1,
debug=False)))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (16 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=32)
......@@ -32,3 +32,8 @@ model = dict(
code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
pos_weight=-1,
debug=False)))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (16 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=32)
......@@ -40,3 +40,8 @@ model = dict(
],
rotations=[0, 1.57],
reshape_out=True)))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment