"docs/source/vscode:/vscode.git/clone" did not exist on "e96325688214c5da245c841887e4984e3cece134"
Unverified Commit 7b947e04 authored by xiliu8006's avatar xiliu8006 Committed by GitHub
Browse files

[Enhance] Add chinese version readme (#316)

* Add chinese version readme

* Delete useless words

* modify the link of dynamic voxelization

* modify readme

* remove it

* remove it

* modify chinese version readme

* delete the wrong whitespace

* Modify chinese readme

* Modify chinese readme

* modify chinese version readme
parent a481f5a8
......@@ -16,7 +16,9 @@ Documentation: https://mmdetection3d.readthedocs.io/
## Introduction
The master branch works with **PyTorch 1.3 to 1.6**.
English | [简体中文](README_zh-CN.md)
The master branch works with **PyTorch 1.3+**.
MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is
a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk/).
......@@ -36,7 +38,7 @@ a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk
- **Natural integration with 2D detection**
All the about **50+ methods, 300+ models**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) can be trained or used in this codebase.
All the about **300+ models, methods of 40+ papers**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) can be trained or used in this codebase.
- **High efficiency**
......@@ -99,9 +101,9 @@ Support methods
| SSN | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
Other features
- [x] [Dynamic Voxelization](configs/carafe/README.md)
- [x] [Dynamic Voxelization](configs/dynamic_voxelization/README.md)
**Note:** All the about **300 models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) can be trained or used in this codebase.
**Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) can be trained or used in this codebase.
## Installation
......@@ -109,7 +111,7 @@ Please refer to [getting_started.md](docs/getting_started.md) for installation.
## Get Started
Please see [getting_started.md](docs/getting_started.md) for the basic usage of MMDetection3D. We provide guidance for quick run [with existing dataset](docs/1_exist_data_model.md) and [with customized dataset](docs/2_new_data_model.md) for beginners. There are also tutorials for [learning configuration systems](docs/tutorials/config.md), [adding new dataset](docs/tutorials/customize_dataset.md), [designing data pipeline](docs/tutorials/data_pipeline.md), [customizing models](docs/tutorials/customize_models.md), [customizing runtime settings](docs/tutorials/customize_runtime.md) and [waymo dataset](docs/tutorials/waymo.md).
Please see [getting_started.md](docs/getting_started.md) for the basic usage of MMDetection3D. We provide guidance for quick run [with existing dataset](docs/1_exist_data_model.md) and [with customized dataset](docs/2_new_data_model.md) for beginners. There are also tutorials for [learning configuration systems](docs/tutorials/config.md), [adding new dataset](docs/tutorials/customize_dataset.md), [designing data pipeline](docs/tutorials/data_pipeline.md), [customizing models](docs/tutorials/customize_models.md), [customizing runtime settings](docs/tutorials/customize_runtime.md) and [Waymo dataset](docs/tutorials/waymo.md).
## Contributing
......
<div align="center">
<img src="resources/mmdet3d-logo.png" width="600"/>
</div>
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/master/LICENSE)
**新闻**: 我们发布了版本v0.10.0.
在第三届[ nuScenes 3D 检测挑战赛](https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any)(第五届 AI Driving Olympics, NeurIPS 2020)中,我们获得了最佳 PKL 奖、第三名和最好的纯视觉的结果,相关的代码和模型将会在不久后发布。
文档: https://mmdetection3d.readthedocs.io/
## 简介
[English](README.md) | 简体中文
主分支代码目前支持 PyTorch 1.3 以上的版本。
MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱, 下一代面向3D检测的平台. 它是 OpenMMlab 项目的一部分,这个项目由香港中文大学多媒体实验室和商汤科技联合发起.
![demo image](resources/mmdet3d_outdoor_demo.gif)
### 主要特性
- **支持多模态/单模态的检测器**
支持多模态/单模态检测器,包括 MVXNet,VoteNet,PointPillars 等。
- **支持户内/户外的数据集**
支持室内/室外的3D检测数据集,包括 ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, KITTI.
对于 nuScenes 数据集, 我们也支持 [nuImages 数据集](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/nuimages).
- **与 2D 检测器的自然整合**
[MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) 支持的**300+个模型 , 40+的论文算法**, 和相关模块都可以在此代码库中训练或使用。
- **性能高**
训练速度比其他代码库更快。下表可见主要的对比结果。更多的细节可见[基准测评文档](./docs/benchmarks.md)。我们对比了每秒训练的样本数(值越高越好)。其他代码库不支持的模型被标记为 `×`
| Methods | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) |[votenet](https://github.com/facebookresearch/votenet)| [Det3D](https://github.com/poodarchu/Det3D) |
|:-------:|:-------------:|:---------:|:-----:|:-----:|
| VoteNet | 358 | × | 77 | × |
| PointPillars-car| 141 | × | × | 140 |
| PointPillars-3class| 107 |44 | × | × |
| SECOND| 40 |30 | × | × |
| Part-A2| 17 |14 | × | × |
[MMDetection](https://github.com/open-mmlab/mmdetection)[MMCV](https://github.com/open-mmlab/mmcv) 一样, MMDetection3D 也可以作为一个库去支持各式各样的项目.
## 开源许可证
该项目采用 [Apache 2.0 开源许可证](LICENSE)
## 更新日志
最新的版本 v0.10.0 在 2021.02.01发布。
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/changelog.md)
## 基准测试和模型库
测试结果和模型可以在[模型库](docs/model_zoo.md)中找到。
已支持的骨干网络:
- [x] PointNet (CVPR'2017)
- [x] PointNet++ (NeurIPS'2017)
- [x] RegNet (CVPR'2020)
已支持的算法:
- [x] [SECOND (Sensor'2018)](configs/second/README.md)
- [x] [PointPillars (CVPR'2019)](configs/pointpillars/README.md)
- [x] [FreeAnchor (NeurIPS'2019)](configs/free_anchor/README.md)
- [x] [VoteNet (ICCV'2019)](configs/votenet/README.md)
- [x] [H3DNet (ECCV'2020)](configs/h3dnet/README.md)
- [x] [3DSSD (CVPR'2020)](configs/3dssd/README.md)
- [x] [Part-A2 (TPAMI'2020)](configs/parta2/README.md)
- [x] [MVXNet (ICRA'2019)](configs/mvxnet/README.md)
- [x] [CenterPoint (Arxiv'2020)](configs/centerpoint/README.md)
- [x] [SSN (ECCV'2020)](configs/ssn/README.md)
| | ResNet | ResNeXt | SENet |PointNet++ | HRNet | RegNetX | Res2Net |
|--------------------|:--------:|:--------:|:--------:|:---------:|:-----:|:--------:|:-----:|
| SECOND | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| PointPillars | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| FreeAnchor | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| VoteNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| H3DNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| 3DSSD | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| Part-A2 | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| MVXNet | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| CenterPoint | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| SSN | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
其他特性
- [x] [Dynamic Voxelization](configs/dynamic_voxelization/README.md)
**注意:** [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) 支持的基于2D检测的**300+个模型 , 40+的论文算法**在 MMDetection3D 中都可以被训练或使用。
## 安装
请参考[快速入门文档](docs/get_started.md)进行安装。
## 快速入门
请参考[快速入门文档](docs/get_started.md)学习 MMDetection3D 的基本使用。 我们为新手提供了分别针对[已有数据集](docs/1_exist_data_model.md)[新数据集](docs/2_new_data_model.md)的使用指南。我们也提供了一些进阶教程,内容覆盖了[学习配置文件](docs/tutorials/config.md), [增加数据集支持](docs/tutorials/customize_dataset.md), [设计新的数据预处理流程](docs/tutorials/data_pipeline.md), [增加自定义模型](docs/tutorials/customize_models.md), [增加自定义的运行时配置](docs/tutorials/customize_runtime.md)[Waymo 数据集](docs/tutorials/waymo.md).
## 贡献指南
我们感谢所有的贡献者为改进和提升 MMDetection3D 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
## 致谢
MMDetection3D 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新的 3D 检测模型。
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment