".github/vscode:/vscode.git/clone" did not exist on "7e61737d3f694c2caa9eecf235710e55179df9dd"
Commit 7a6deaef authored by ChaimZhu's avatar ChaimZhu Committed by ZwwWayne
Browse files

[Refactor] rename `CLASSES` and `PALETTE` to `classes` and `palette` in dataset metainfo (#1932)

* rame CLASS and PALETTE to class and palette

* change mmcv-full to mmcv

* fix comments
parent 48ab8e2d
......@@ -4,7 +4,7 @@ data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
input_modality = dict(use_lidar=True, use_camera=False)
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
db_sampler = dict(
data_root=data_root,
......
......@@ -4,7 +4,7 @@ data_root = 'data/kitti/'
class_names = ['Car']
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
input_modality = dict(use_lidar=True, use_camera=False)
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
db_sampler = dict(
data_root=data_root,
......
......@@ -2,7 +2,7 @@ dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
input_modality = dict(use_lidar=False, use_camera=True)
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
......
......@@ -78,7 +78,7 @@ train_dataloader = dict(
data_root=data_root,
ann_file='lyft_infos_train.pkl',
pipeline=train_pipeline,
metainfo=dict(CLASSES=class_names),
metainfo=dict(classes=class_names),
modality=input_modality,
data_prefix=data_prefix,
test_mode=False,
......@@ -94,7 +94,7 @@ test_dataloader = dict(
data_root=data_root,
ann_file='lyft_infos_val.pkl',
pipeline=test_pipeline,
metainfo=dict(CLASSES=class_names),
metainfo=dict(classes=class_names),
modality=input_modality,
data_prefix=data_prefix,
test_mode=True,
......@@ -110,7 +110,7 @@ val_dataloader = dict(
data_root=data_root,
ann_file='lyft_infos_val.pkl',
pipeline=test_pipeline,
metainfo=dict(CLASSES=class_names),
metainfo=dict(classes=class_names),
modality=input_modality,
test_mode=True,
data_prefix=data_prefix,
......
......@@ -6,7 +6,7 @@ class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
# Input modality for nuScenes dataset, this is consistent with the submission
......
......@@ -4,7 +4,7 @@ class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
# Input modality for nuScenes dataset, this is consistent with the submission
# format which requires the information in input_modality.
input_modality = dict(use_lidar=False, use_camera=True)
......
# For S3DIS seg we usually do 13-class segmentation
class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter')
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
dataset_type = 'S3DISSegDataset'
data_root = 'data/s3dis/'
input_modality = dict(use_lidar=True, use_camera=False)
......
......@@ -3,7 +3,7 @@ dataset_type = 'ScanNetDataset'
data_root = 'data/scannet/'
metainfo = dict(
CLASSES=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
classes=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin'))
......
......@@ -3,7 +3,7 @@ class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
'bathtub', 'otherfurniture')
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
dataset_type = 'ScanNetSegDataset'
data_root = 'data/scannet/'
input_modality = dict(use_lidar=True, use_camera=False)
......
......@@ -3,7 +3,7 @@ data_root = 'data/sunrgbd/'
class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
'night_stand', 'bookshelf', 'bathtub')
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
......
......@@ -16,7 +16,7 @@ file_client_args = dict(backend='disk')
# })
class_names = ['Car', 'Pedestrian', 'Cyclist']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4]
input_modality = dict(use_lidar=True, use_camera=False)
......
......@@ -11,7 +11,7 @@ file_client_args = dict(backend='disk')
# backend='petrel', path_mapping=dict(data='s3://waymo_data/'))
class_names = ['Car']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4]
input_modality = dict(use_lidar=True, use_camera=False)
......
......@@ -56,7 +56,7 @@ eval_pipeline = [
dict(type='Pack3DDetInputs', keys=['img']),
]
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
train_dataloader = dict(
batch_size=3,
......
......@@ -62,7 +62,7 @@ eval_pipeline = [
dict(type='MultiViewWrapper', transforms=test_transforms),
dict(type='Pack3DDetInputs', keys=['img'])
]
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
train_dataloader = dict(
batch_size=2,
......
......@@ -210,7 +210,7 @@ model = dict(
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict(
data_root=data_root,
......
......@@ -81,7 +81,7 @@ model = dict(
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict(
data_root=data_root,
......
......@@ -107,7 +107,7 @@ model = dict(
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict(
......
......@@ -99,7 +99,7 @@ model = dict(
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names)
metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict(
data_root=data_root,
......
......@@ -126,7 +126,7 @@ train_dataloader = dict(
data_root=data_root,
ann_file='nuscenes_infos_train.pkl',
pipeline=train_pipeline,
metainfo=dict(CLASSES=class_names),
metainfo=dict(classes=class_names),
test_mode=False,
data_prefix=data_prefix,
use_valid_flag=True,
......@@ -134,8 +134,8 @@ train_dataloader = dict(
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='LiDAR')))
test_dataloader = dict(
dataset=dict(pipeline=test_pipeline, metainfo=dict(CLASSES=class_names)))
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names)))
val_dataloader = dict(
dataset=dict(pipeline=test_pipeline, metainfo=dict(CLASSES=class_names)))
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names)))
train_cfg = dict(val_interval=20)
......@@ -122,8 +122,8 @@ test_pipeline = [
train_dataloader = dict(
dataset=dict(
dataset=dict(
pipeline=train_pipeline, metainfo=dict(CLASSES=class_names))))
pipeline=train_pipeline, metainfo=dict(classes=class_names))))
test_dataloader = dict(
dataset=dict(pipeline=test_pipeline, metainfo=dict(CLASSES=class_names)))
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names)))
val_dataloader = dict(
dataset=dict(pipeline=test_pipeline, metainfo=dict(CLASSES=class_names)))
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names)))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment