Commit 7286e979 authored by VVsssssk's avatar VVsssssk Committed by ZwwWayne
Browse files

[Fix]Fix Centerpoints point clouds range (#1998)

* fix comments

* fix config

* fix

* fix
parent 7f9874aa
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-50, -50, -5, 50, 50, 3]
# Using calibration info convert the Lidar-coordinate point cloud range to the
# ego-coordinate point cloud range could bring a little promotion in nuScenes.
# point_cloud_range = [-50, -50.8, -5, 50, 49.2, 3]
# For nuScenes we usually do 10-class detection
class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
......
......@@ -7,6 +7,9 @@ _base_ = [
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
# Using calibration info convert the Lidar-coordinate point cloud range to the
# ego-coordinate point cloud range could bring a little promotion in nuScenes.
# point_cloud_range = [-51.2, -52, -5.0, 51.2, 50.4, 3.0]
# For nuScenes we usually do 10-class detection
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
......
......@@ -4,6 +4,9 @@ _base_ = ['./centerpoint_voxel01_second_secfpn_8xb4-cyclic-20e_nus-3d.py']
# cloud range accordingly
voxel_size = [0.075, 0.075, 0.2]
point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0]
# Using calibration info convert the Lidar-coordinate point cloud range to the
# ego-coordinate point cloud range could bring a little promotion in nuScenes.
# point_cloud_range = [-54, -54.8, -5.0, 54, 53.2, 3.0]
# For nuScenes we usually do 10-class detection
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
......
......@@ -2,6 +2,9 @@ _base_ = './centerpoint_voxel0075_second_secfpn_' \
'head-dcn-circlenms_8xb4_cyclic-20e_nus-3d.py'
point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0]
# Using calibration info convert the Lidar-coordinate point cloud range to the
# ego-coordinate point cloud range could bring a little promotion in nuScenes.
# point_cloud_range = [-54, -54.8, -5.0, 54, 53.2, 3.0]
file_client_args = dict(backend='disk')
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
......
......@@ -2,6 +2,9 @@ _base_ = './centerpoint_voxel0075_second_secfpn' \
'_head-dcn_8xb4-cyclic-20e_nus-3d.py'
point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0]
# Using calibration info convert the Lidar-coordinate point cloud range to the
# ego-coordinate point cloud range could bring a little promotion in nuScenes.
# point_cloud_range = [-54, -54.8, -5.0, 54, 53.2, 3.0]
file_client_args = dict(backend='disk')
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
......
......@@ -4,6 +4,9 @@ _base_ = './centerpoint_voxel0075_second_secfpn' \
model = dict(test_cfg=dict(pts=dict(use_rotate_nms=True, max_num=500)))
point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0]
# Using calibration info convert the Lidar-coordinate point cloud range to the
# ego-coordinate point cloud range could bring a little promotion in nuScenes.
# point_cloud_range = [-54, -54.8, -5.0, 54, 53.2, 3.0]
file_client_args = dict(backend='disk')
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
......
......@@ -7,6 +7,9 @@ _base_ = [
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
# Using calibration info convert the Lidar-coordinate point cloud range to the
# ego-coordinate point cloud range could bring a little promotion in nuScenes.
# point_cloud_range = [-51.2, -52, -5.0, 51.2, 50.4, 3.0]
# For nuScenes we usually do 10-class detection
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment