Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
6c03a971
Unverified
Commit
6c03a971
authored
Oct 14, 2022
by
Tai-Wang
Committed by
GitHub
Oct 14, 2022
Browse files
Release v1.1.0rc1
Release v1.1.0rc1
parents
9611c2d0
ca42c312
Changes
174
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
164 additions
and
64 deletions
+164
-64
configs/h3dnet/h3dnet_8xb3_scannet-seg.py
configs/h3dnet/h3dnet_8xb3_scannet-seg.py
+5
-0
configs/imvotenet/imvotenet_stage2_8xb16_sunrgbd-3d.py
configs/imvotenet/imvotenet_stage2_8xb16_sunrgbd-3d.py
+5
-0
configs/imvoxelnet/imvoxelnet_8xb4_kitti-3d-car.py
configs/imvoxelnet/imvoxelnet_8xb4_kitti-3d-car.py
+7
-25
configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
...arta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
+6
-0
configs/pgd/pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py
...gs/pgd/pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py
+2
-2
configs/point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py
configs/point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py
+64
-31
configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb2-2x_lyft-3d-range100.py
...s/pointpillars_hv_fpn_sbn-all_8xb2-2x_lyft-3d-range100.py
+5
-0
configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb2-2x_lyft-3d.py
...intpillars/pointpillars_hv_fpn_sbn-all_8xb2-2x_lyft-3d.py
+5
-0
configs/pointpillars/pointpillars_hv_secfpn_sbn-all_16xb2-2x_waymo-3d-3class.py
...ointpillars_hv_secfpn_sbn-all_16xb2-2x_waymo-3d-3class.py
+6
-1
configs/pointpillars/pointpillars_hv_secfpn_sbn-all_16xb2-2x_waymo-3d-car.py
...s/pointpillars_hv_secfpn_sbn-all_16xb2-2x_waymo-3d-car.py
+6
-1
configs/pointpillars/pointpillars_hv_secfpn_sbn-all_16xb2-2x_waymoD5-3d-car.py
...pointpillars_hv_secfpn_sbn-all_16xb2-2x_waymoD5-3d-car.py
+5
-0
configs/pointpillars/pointpillars_hv_secfpn_sbn-all_8xb2-2x_lyft-3d-range100.py
...ointpillars_hv_secfpn_sbn-all_8xb2-2x_lyft-3d-range100.py
+5
-0
configs/pointpillars/pointpillars_hv_secfpn_sbn-all_8xb2-2x_lyft-3d.py
...pillars/pointpillars_hv_secfpn_sbn-all_8xb2-2x_lyft-3d.py
+5
-0
configs/regnet/pointpillars_hv_regnet-400mf_fpn_sbn-all_8xb2-2x_lyft-3d.py
...intpillars_hv_regnet-400mf_fpn_sbn-all_8xb2-2x_lyft-3d.py
+5
-0
configs/regnet/pointpillars_hv_regnet-400mf_fpn_sbn-all_range100_8xb2-2x_lyft-3d.py
...s_hv_regnet-400mf_fpn_sbn-all_range100_8xb2-2x_lyft-3d.py
+5
-0
configs/second/second_hv_secfpn_sbn-all_16xb2-2x_waymoD5-3d-3class.py
...nd/second_hv_secfpn_sbn-all_16xb2-2x_waymoD5-3d-3class.py
+5
-0
configs/smoke/smoke_dla34_dlaneck_gn-all_4xb8-6x_kitti-mono3d.py
.../smoke/smoke_dla34_dlaneck_gn-all_4xb8-6x_kitti-mono3d.py
+8
-4
configs/ssn/ssn_hv_secfpn_sbn-all_16xb2-2x_lyft-3d.py
configs/ssn/ssn_hv_secfpn_sbn-all_16xb2-2x_lyft-3d.py
+5
-0
configs/votenet/votenet_8xb16_sunrgbd-3d.py
configs/votenet/votenet_8xb16_sunrgbd-3d.py
+5
-0
configs/votenet/votenet_8xb8_scannet-3d.py
configs/votenet/votenet_8xb8_scannet-3d.py
+5
-0
No files found.
configs/h3dnet/h3dnet_8xb3_scannet-seg.py
View file @
6c03a971
...
...
@@ -67,3 +67,8 @@ default_hooks = dict(
logger
=
dict
(
type
=
'LoggerHook'
,
interval
=
30
)
)
# yapf:enable
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (3 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
24
)
configs/imvotenet/imvotenet_stage2_8xb16_sunrgbd-3d.py
View file @
6c03a971
...
...
@@ -217,3 +217,8 @@ test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
# may also use your own pre-trained image branch
load_from
=
'https://download.openmmlab.com/mmdetection3d/v0.1.0_models/imvotenet/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class/imvotenet_faster_rcnn_r50_fpn_2x4_sunrgbd-3d-10class_20210323_173222-cad62aeb.pth'
# noqa
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (16 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
128
)
configs/imvoxelnet/imvoxelnet_8xb4_kitti-3d-car.py
View file @
6c03a971
_base_
=
[
'../_base_/schedules/mmdet-schedule-1x.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
type
=
'ImVoxelNet'
,
data_preprocessor
=
dict
(
...
...
@@ -151,7 +155,8 @@ test_evaluator = val_evaluator
# optimizer
optim_wrapper
=
dict
(
type
=
'OptimWrapper'
,
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
0.0001
,
weight_decay
=
0.0001
),
optimizer
=
dict
(
_delete_
=
True
,
type
=
'AdamW'
,
lr
=
0.0001
,
weight_decay
=
0.0001
),
paramwise_cfg
=
dict
(
custom_keys
=
{
'backbone'
:
dict
(
lr_mult
=
0.1
,
decay_mult
=
1.0
)}),
clip_grad
=
dict
(
max_norm
=
35.
,
norm_type
=
2
))
...
...
@@ -166,30 +171,7 @@ param_scheduler = [
]
# hooks
default_hooks
=
dict
(
timer
=
dict
(
type
=
'IterTimerHook'
),
logger
=
dict
(
type
=
'LoggerHook'
,
interval
=
50
),
param_scheduler
=
dict
(
type
=
'ParamSchedulerHook'
),
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
1
,
max_keep_ckpts
=
1
),
sampler_seed
=
dict
(
type
=
'DistSamplerSeedHook'
),
)
# training schedule for 2x
train_cfg
=
dict
(
type
=
'EpochBasedTrainLoop'
,
max_epochs
=
12
,
val_interval
=
1
)
val_cfg
=
dict
(
type
=
'ValLoop'
)
test_cfg
=
dict
(
type
=
'TestLoop'
)
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
max_keep_ckpts
=
1
))
# runtime
default_scope
=
'mmdet3d'
env_cfg
=
dict
(
cudnn_benchmark
=
False
,
mp_cfg
=
dict
(
mp_start_method
=
'fork'
,
opencv_num_threads
=
0
),
dist_cfg
=
dict
(
backend
=
'nccl'
),
)
log_level
=
'INFO'
load_from
=
None
resume
=
False
dist_params
=
dict
(
backend
=
'nccl'
)
find_unused_parameters
=
True
# only 1 of 4 FPN outputs is used
configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
View file @
6c03a971
...
...
@@ -127,3 +127,9 @@ test_evaluator = val_evaluator
# Part-A2 uses a different learning rate from what SECOND uses.
optim_wrapper
=
dict
(
optimizer
=
dict
(
lr
=
0.001
))
find_unused_parameters
=
True
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
16
)
configs/pgd/pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py
View file @
6c03a971
...
...
@@ -113,7 +113,7 @@ val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
# optimizer
optim_wrapper
=
dict
(
optimizer
=
dict
(
lr
=
0.01
),
optimizer
=
dict
(
lr
=
0.
0
01
),
paramwise_cfg
=
dict
(
bias_lr_mult
=
2.
,
bias_decay_mult
=
0.
),
clip_grad
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
...
...
@@ -134,4 +134,4 @@ param_scheduler = [
gamma
=
0.1
)
]
train_cfg
=
dict
(
max_epochs
=
48
)
train_cfg
=
dict
(
max_epochs
=
48
,
val_interval
=
2
)
configs/point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py
View file @
6c03a971
...
...
@@ -6,7 +6,8 @@ _base_ = [
# dataset settings
dataset_type
=
'KittiDataset'
data_root
=
'data/kitti/'
class_names
=
[
'Car'
,
'Pedestrian'
,
'Cyclist'
]
class_names
=
[
'Pedestrian'
,
'Cyclist'
,
'Car'
]
metainfo
=
dict
(
CLASSES
=
class_names
)
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
...
...
@@ -42,8 +43,9 @@ train_pipeline = [
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointSample'
,
num_points
=
16384
,
sample_range
=
40.0
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
dict
(
type
=
'Pack3DDetInputs'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
coord_type
=
'LIDAR'
,
load_dim
=
4
,
use_dim
=
4
),
...
...
@@ -61,36 +63,67 @@ test_pipeline = [
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointSample'
,
num_points
=
16384
,
sample_range
=
40.0
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
dict
(
type
=
'PointSample'
,
num_points
=
16384
,
sample_range
=
40.0
)
]),
dict
(
type
=
'Pack3DDetInputs'
,
keys
=
[
'points'
])
]
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
train_dataloader
=
dict
(
batch_size
=
2
,
num_workers
=
2
,
dataset
=
dict
(
type
=
'RepeatDataset'
,
times
=
2
,
dataset
=
dict
(
pipeline
=
train_pipeline
,
classes
=
class_names
))
,
val
=
dict
(
pipeline
=
test_pipeline
,
classes
=
class_names
),
tes
t
=
dict
(
pipeline
=
test_pipeline
,
classes
=
class_names
))
dataset
=
dict
(
pipeline
=
train_pipeline
,
metainfo
=
metainfo
)
))
test_dataloader
=
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
,
metainfo
=
metainfo
))
val_dataloader
=
dict
(
datase
t
=
dict
(
pipeline
=
test_pipeline
,
metainfo
=
metainfo
))
# optimizer
lr
=
0.001
# max learning rate
optimizer
=
dict
(
lr
=
lr
,
betas
=
(
0.95
,
0.85
))
# runtime settings
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
80
)
evaluation
=
dict
(
interval
=
2
)
# yapf:disable
log_config
=
dict
(
interval
=
30
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
dict
(
type
=
'TensorboardLoggerHook'
)
])
# yapf:enable
optim_wrapper
=
dict
(
optimizer
=
dict
(
lr
=
lr
,
betas
=
(
0.95
,
0.85
)))
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
80
,
val_interval
=
2
)
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
16
)
param_scheduler
=
[
# learning rate scheduler
# During the first 35 epochs, learning rate increases from 0 to lr * 10
# during the next 45 epochs, learning rate decreases from lr * 10 to
# lr * 1e-4
dict
(
type
=
'CosineAnnealingLR'
,
T_max
=
35
,
eta_min
=
lr
*
10
,
begin
=
0
,
end
=
35
,
by_epoch
=
True
,
convert_to_iter_based
=
True
),
dict
(
type
=
'CosineAnnealingLR'
,
T_max
=
45
,
eta_min
=
lr
*
1e-4
,
begin
=
35
,
end
=
80
,
by_epoch
=
True
,
convert_to_iter_based
=
True
),
# momentum scheduler
# During the first 35 epochs, momentum increases from 0 to 0.85 / 0.95
# during the next 45 epochs, momentum increases from 0.85 / 0.95 to 1
dict
(
type
=
'CosineAnnealingMomentum'
,
T_max
=
35
,
eta_min
=
0.85
/
0.95
,
begin
=
0
,
end
=
35
,
by_epoch
=
True
,
convert_to_iter_based
=
True
),
dict
(
type
=
'CosineAnnealingMomentum'
,
T_max
=
45
,
eta_min
=
1
,
begin
=
35
,
end
=
80
,
by_epoch
=
True
,
convert_to_iter_based
=
True
)
]
configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb2-2x_lyft-3d-range100.py
View file @
6c03a971
...
...
@@ -3,3 +3,8 @@ _base_ = [
'../_base_/datasets/lyft-3d-range100.py'
,
'../_base_/schedules/schedule-2x.py'
,
'../_base_/default_runtime.py'
]
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
16
)
configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb2-2x_lyft-3d.py
View file @
6c03a971
...
...
@@ -3,3 +3,8 @@ _base_ = [
'../_base_/datasets/lyft-3d.py'
,
'../_base_/schedules/schedule-2x.py'
,
'../_base_/default_runtime.py'
]
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
16
)
configs/pointpillars/pointpillars_hv_secfpn_sbn-all_16xb2-2x_waymo-3d-3class.py
View file @
6c03a971
...
...
@@ -6,4 +6,9 @@ _base_ = [
]
# data settings
data
=
dict
(
train
=
dict
(
dataset
=
dict
(
load_interval
=
1
)))
train_dataloader
=
dict
(
dataset
=
dict
(
dataset
=
dict
(
load_interval
=
1
)))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (16 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
32
)
configs/pointpillars/pointpillars_hv_secfpn_sbn-all_16xb2-2x_waymo-3d-car.py
View file @
6c03a971
...
...
@@ -6,7 +6,7 @@ _base_ = [
]
# data settings
data
=
dict
(
train
=
dict
(
dataset
=
dict
(
load_interval
=
1
)))
train_dataloader
=
dict
(
dataset
=
dict
(
dataset
=
dict
(
load_interval
=
1
)))
# model settings
model
=
dict
(
...
...
@@ -35,3 +35,8 @@ model = dict(
code_weight
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
],
pos_weight
=-
1
,
debug
=
False
)))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (16 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
32
)
configs/pointpillars/pointpillars_hv_secfpn_sbn-all_16xb2-2x_waymoD5-3d-car.py
View file @
6c03a971
...
...
@@ -32,3 +32,8 @@ model = dict(
code_weight
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
],
pos_weight
=-
1
,
debug
=
False
)))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (16 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
32
)
configs/pointpillars/pointpillars_hv_secfpn_sbn-all_8xb2-2x_lyft-3d-range100.py
View file @
6c03a971
...
...
@@ -40,3 +40,8 @@ model = dict(
],
rotations
=
[
0
,
1.57
],
reshape_out
=
True
)))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
16
)
configs/pointpillars/pointpillars_hv_secfpn_sbn-all_8xb2-2x_lyft-3d.py
View file @
6c03a971
...
...
@@ -41,3 +41,8 @@ model = dict(
],
rotations
=
[
0
,
1.57
],
reshape_out
=
True
)))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
16
)
configs/regnet/pointpillars_hv_regnet-400mf_fpn_sbn-all_8xb2-2x_lyft-3d.py
View file @
6c03a971
...
...
@@ -22,3 +22,8 @@ model = dict(
norm_eval
=
False
,
style
=
'pytorch'
),
pts_neck
=
dict
(
in_channels
=
[
64
,
160
,
384
]))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
16
)
configs/regnet/pointpillars_hv_regnet-400mf_fpn_sbn-all_range100_8xb2-2x_lyft-3d.py
View file @
6c03a971
...
...
@@ -22,3 +22,8 @@ model = dict(
norm_eval
=
False
,
style
=
'pytorch'
),
pts_neck
=
dict
(
in_channels
=
[
64
,
160
,
384
]))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
16
)
configs/second/second_hv_secfpn_sbn-all_16xb2-2x_waymoD5-3d-3class.py
View file @
6c03a971
...
...
@@ -140,3 +140,8 @@ test_dataloader = dict(
test_mode
=
True
,
metainfo
=
metainfo
,
box_type_3d
=
'LiDAR'
))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (16 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
32
)
configs/smoke/smoke_dla34_dlaneck_gn-all_4xb8-6x_kitti-mono3d.py
View file @
6c03a971
...
...
@@ -47,8 +47,10 @@ train_dataloader = dict(
test_dataloader
=
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
))
val_dataloader
=
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
))
# training schedule for 1x
train_cfg
=
dict
(
type
=
'EpochBasedTrainLoop'
,
max_epochs
=
12
,
val_interval
=
1
)
# training schedule for 6x
max_epochs
=
72
train_cfg
=
dict
(
type
=
'EpochBasedTrainLoop'
,
max_epochs
=
max_epochs
,
val_interval
=
5
)
val_cfg
=
dict
(
type
=
'ValLoop'
)
test_cfg
=
dict
(
type
=
'TestLoop'
)
...
...
@@ -57,9 +59,9 @@ param_scheduler = [
dict
(
type
=
'MultiStepLR'
,
begin
=
0
,
end
=
12
,
end
=
max_epochs
,
by_epoch
=
True
,
milestones
=
[
8
,
11
],
milestones
=
[
50
],
gamma
=
0.1
)
]
...
...
@@ -68,3 +70,5 @@ optim_wrapper = dict(
type
=
'OptimWrapper'
,
optimizer
=
dict
(
type
=
'Adam'
,
lr
=
2.5e-4
),
clip_grad
=
None
)
find_unused_parameters
=
True
configs/ssn/ssn_hv_secfpn_sbn-all_16xb2-2x_lyft-3d.py
View file @
6c03a971
...
...
@@ -220,3 +220,8 @@ model = dict(
code_weight
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
],
pos_weight
=-
1
,
debug
=
False
)))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (16 GPUs) x (2 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
32
)
configs/votenet/votenet_8xb16_sunrgbd-3d.py
View file @
6c03a971
...
...
@@ -20,3 +20,8 @@ model = dict(
[
0.404671
,
1.071108
,
1.688889
],
[
0.76584
,
1.398258
,
0.472728
]
]),
))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (16 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
128
)
configs/votenet/votenet_8xb8_scannet-3d.py
View file @
6c03a971
...
...
@@ -32,3 +32,8 @@ model = dict(
[
0.47535285
,
0.49249494
,
0.5802117
]])))
default_hooks
=
dict
(
logger
=
dict
(
type
=
'LoggerHook'
,
interval
=
30
))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (8 samples per GPU).
auto_scale_lr
=
dict
(
enable
=
False
,
base_batch_size
=
64
)
Prev
1
2
3
4
5
6
7
…
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment