Commit 4f1a5e52 authored by liyinhao's avatar liyinhao
Browse files

Merge branch 'master_temp' into indoor_augment

parents c2c0f3d8 f584b970
from mmdet.utils import Registry
from mmcv.utils import Registry
OBJECTSAMPLERS = Registry('Object sampler')
from .anchor_heads import * # noqa: F401,F403
from .backbones import * # noqa: F401,F403
from .bbox_heads import * # noqa: F401,F403
from .builder import (build_backbone, build_detector, build_fusion_layer,
build_head, build_loss, build_middle_encoder, build_neck,
build_roi_extractor, build_shared_head,
......@@ -11,7 +10,7 @@ from .losses import * # noqa: F401,F403
from .middle_encoders import * # noqa: F401,F403
from .necks import * # noqa: F401,F403
from .registry import FUSION_LAYERS, MIDDLE_ENCODERS, VOXEL_ENCODERS
from .roi_extractors import * # noqa: F401,F403
from .roi_heads import * # noqa: F401,F403
from .voxel_encoders import * # noqa: F401,F403
__all__ = [
......
from .boxvelo_head import Anchor3DVeloHead
from .parta2_rpn_head import PartA2RPNHead
from .second_head import SECONDHead
__all__ = ['Anchor3DVeloHead', 'SECONDHead']
__all__ = ['Anchor3DVeloHead', 'SECONDHead', 'PartA2RPNHead']
import numpy as np
import torch
from mmcv.cnn import normal_init
from mmcv.cnn import bias_init_with_prob, normal_init
from mmdet3d.core import box_torch_ops, boxes3d_to_bev_torch_lidar
from mmdet3d.ops.iou3d.iou3d_utils import nms_gpu, nms_normal_gpu
from mmdet.models import HEADS
from ..utils import bias_init_with_prob
from .second_head import SECONDHead
@HEADS.register_module
@HEADS.register_module()
class Anchor3DVeloHead(SECONDHead):
"""Anchor-based head for 3D anchor with velocity
Args:
in_channels (int): Number of channels in the input feature map.
feat_channels (int): Number of channels of the feature map.
anchor_scales (Iterable): Anchor scales.
anchor_ratios (Iterable): Anchor aspect ratios.
anchor_strides (Iterable): Anchor strides.
anchor_base_sizes (Iterable): Anchor base sizes.
target_means (Iterable): Mean values of regression targets.
target_stds (Iterable): Std values of regression targets.
loss_cls (dict): Config of classification loss.
loss_bbox (dict): Config of localization loss.
""" # noqa: W605
......@@ -31,25 +24,25 @@ class Anchor3DVeloHead(SECONDHead):
in_channels,
train_cfg,
test_cfg,
cache_anchor=False,
feat_channels=256,
use_direction_classifier=True,
encode_bg_as_zeros=False,
box_code_size=9,
anchor_generator=dict(type='AnchorGeneratorRange', ),
anchor_range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
anchor_strides=[2],
anchor_sizes=[[1.6, 3.9, 1.56]],
anchor_rotations=[0, 1.57],
anchor_custom_values=[0, 0],
anchor_generator=dict(
type='Anchor3DRangeGenerator',
range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
strides=[2],
sizes=[[1.6, 3.9, 1.56]],
rotations=[0, 1.57],
custom_values=[0, 0],
reshape_out=True,
),
assigner_per_size=False,
assign_per_class=False,
diff_rad_by_sin=True,
dir_offset=0,
dir_limit_offset=1,
target_means=(.0, .0, .0, .0),
target_stds=(1.0, 1.0, 1.0, 1.0),
bbox_coder=dict(type='Residual3DBoxCoder', ),
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
......@@ -58,14 +51,11 @@ class Anchor3DVeloHead(SECONDHead):
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2)):
super().__init__(class_names, in_channels, train_cfg, test_cfg,
cache_anchor, feat_channels, use_direction_classifier,
feat_channels, use_direction_classifier,
encode_bg_as_zeros, box_code_size, anchor_generator,
anchor_range, anchor_strides, anchor_sizes,
anchor_rotations, anchor_custom_values,
assigner_per_size, assign_per_class, diff_rad_by_sin,
dir_offset, dir_limit_offset, target_means,
target_stds, bbox_coder, loss_cls, loss_bbox,
loss_dir)
dir_offset, dir_limit_offset, bbox_coder, loss_cls,
loss_bbox, loss_dir)
self.num_classes = num_classes
# build head layers & losses
if not self.use_sigmoid_cls:
......@@ -131,9 +121,7 @@ class Anchor3DVeloHead(SECONDHead):
scores = scores[topk_inds, :]
dir_cls_score = dir_cls_score[topk_inds]
bboxes = self.bbox_coder.decode_torch(anchors, bbox_pred,
self.target_means,
self.target_stds)
bboxes = self.bbox_coder.decode(anchors, bbox_pred)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_dir_scores.append(dir_cls_score)
......
from __future__ import division
import numpy as np
import torch
from mmdet3d.core import box_torch_ops, boxes3d_to_bev_torch_lidar
from mmdet3d.ops.iou3d.iou3d_utils import nms_gpu, nms_normal_gpu
from mmdet.models import HEADS
from .second_head import SECONDHead
@HEADS.register_module()
class PartA2RPNHead(SECONDHead):
"""rpn head for PartA2
Args:
class_name (list[str]): name of classes (TODO: to be removed)
in_channels (int): Number of channels in the input feature map.
train_cfg (dict): train configs
test_cfg (dict): test configs
feat_channels (int): Number of channels of the feature map.
use_direction_classifier (bool): Whether to add a direction classifier.
encode_bg_as_zeros (bool): Whether to use sigmoid of softmax
(TODO: to be removed)
box_code_size (int): The size of box code.
anchor_generator(dict): Config dict of anchor generator.
assigner_per_size (bool): Whether to do assignment for each separate
anchor size.
assign_per_class (bool): Whether to do assignment for each class.
diff_rad_by_sin (bool): Whether to change the difference into sin
difference for box regression loss.
dir_offset (float | int): The offset of BEV rotation angles
(TODO: may be moved into box coder)
dirlimit_offset (float | int): The limited range of BEV rotation angles
(TODO: may be moved into box coder)
box_coder (dict): Config dict of box coders.
loss_cls (dict): Config of classification loss.
loss_bbox (dict): Config of localization loss.
loss_dir (dict): Config of direction classifier loss.
""" # npqa:W293
def __init__(self,
class_name,
in_channels,
train_cfg,
test_cfg,
feat_channels=256,
use_direction_classifier=True,
encode_bg_as_zeros=False,
box_code_size=7,
anchor_generator=dict(
type='Anchor3DRangeGenerator',
range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
strides=[2],
sizes=[[1.6, 3.9, 1.56]],
rotations=[0, 1.57],
custom_values=[],
reshape_out=False),
assigner_per_size=False,
assign_per_class=False,
diff_rad_by_sin=True,
dir_offset=0,
dir_limit_offset=1,
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2)):
super().__init__(class_name, in_channels, train_cfg, test_cfg,
feat_channels, use_direction_classifier,
encode_bg_as_zeros, box_code_size, anchor_generator,
assigner_per_size, assign_per_class, diff_rad_by_sin,
dir_offset, dir_limit_offset, bbox_coder, loss_cls,
loss_bbox, loss_dir)
def get_bboxes(self,
cls_scores,
bbox_preds,
dir_cls_preds,
input_metas,
cfg,
rescale=False):
assert len(cls_scores) == len(bbox_preds)
assert len(cls_scores) == len(dir_cls_preds)
num_levels = len(cls_scores)
featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
device = cls_scores[0].device
mlvl_anchors = self.anchor_generator.grid_anchors(
featmap_sizes, device=device)
mlvl_anchors = [
anchor.reshape(-1, self.box_code_size) for anchor in mlvl_anchors
]
result_list = []
for img_id in range(len(input_metas)):
cls_score_list = [
cls_scores[i][img_id].detach() for i in range(num_levels)
]
bbox_pred_list = [
bbox_preds[i][img_id].detach() for i in range(num_levels)
]
dir_cls_pred_list = [
dir_cls_preds[i][img_id].detach() for i in range(num_levels)
]
input_meta = input_metas[img_id]
proposals = self.get_bboxes_single(cls_score_list, bbox_pred_list,
dir_cls_pred_list, mlvl_anchors,
input_meta, cfg, rescale)
result_list.append(proposals)
return result_list
def get_bboxes_single(self,
cls_scores,
bbox_preds,
dir_cls_preds,
mlvl_anchors,
input_meta,
cfg,
rescale=False):
assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
mlvl_bboxes = []
mlvl_max_scores = []
mlvl_label_pred = []
mlvl_dir_scores = []
mlvl_cls_score = []
for cls_score, bbox_pred, dir_cls_pred, anchors in zip(
cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:]
dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]
cls_score = cls_score.permute(1, 2,
0).reshape(-1, self.num_classes)
if self.use_sigmoid_cls:
scores = cls_score.sigmoid()
else:
scores = cls_score.softmax(-1)
bbox_pred = bbox_pred.permute(1, 2,
0).reshape(-1, self.box_code_size)
nms_pre = cfg.get('nms_pre', -1)
if self.use_sigmoid_cls:
max_scores, pred_labels = scores.max(dim=1)
else:
max_scores, pred_labels = scores[:, :-1].max(dim=1)
# get topk
if nms_pre > 0 and scores.shape[0] > nms_pre:
topk_scores, topk_inds = max_scores.topk(nms_pre)
anchors = anchors[topk_inds, :]
bbox_pred = bbox_pred[topk_inds, :]
max_scores = topk_scores
cls_score = cls_score[topk_inds, :]
dir_cls_score = dir_cls_score[topk_inds]
pred_labels = pred_labels[topk_inds]
bboxes = self.bbox_coder.decode(anchors, bbox_pred)
mlvl_bboxes.append(bboxes)
mlvl_max_scores.append(max_scores)
mlvl_cls_score.append(cls_score)
mlvl_label_pred.append(pred_labels)
mlvl_dir_scores.append(dir_cls_score)
mlvl_bboxes = torch.cat(mlvl_bboxes)
mlvl_bboxes_for_nms = boxes3d_to_bev_torch_lidar(mlvl_bboxes)
mlvl_max_scores = torch.cat(mlvl_max_scores)
mlvl_label_pred = torch.cat(mlvl_label_pred)
mlvl_dir_scores = torch.cat(mlvl_dir_scores)
mlvl_cls_score = torch.cat(
mlvl_cls_score) # shape [k, num_class] before sigmoid
score_thr = cfg.get('score_thr', 0)
result = self.class_agnostic_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
mlvl_max_scores, mlvl_label_pred,
mlvl_cls_score, mlvl_dir_scores,
score_thr, cfg.nms_post, cfg)
result.update(dict(sample_idx=input_meta['sample_idx']))
return result
def class_agnostic_nms(self, mlvl_bboxes, mlvl_bboxes_for_nms,
mlvl_max_scores, mlvl_label_pred, mlvl_cls_score,
mlvl_dir_scores, score_thr, max_num, cfg):
bboxes = []
scores = []
labels = []
dir_scores = []
cls_scores = []
score_thr_inds = mlvl_max_scores > score_thr
_scores = mlvl_max_scores[score_thr_inds]
_bboxes_for_nms = mlvl_bboxes_for_nms[score_thr_inds, :]
if cfg.use_rotate_nms:
nms_func = nms_gpu
else:
nms_func = nms_normal_gpu
selected = nms_func(_bboxes_for_nms, _scores, cfg.nms_thr)
_mlvl_bboxes = mlvl_bboxes[score_thr_inds, :]
_mlvl_dir_scores = mlvl_dir_scores[score_thr_inds]
_mlvl_label_pred = mlvl_label_pred[score_thr_inds]
_mlvl_cls_score = mlvl_cls_score[score_thr_inds]
if len(selected) > 0:
bboxes.append(_mlvl_bboxes[selected])
scores.append(_scores[selected])
labels.append(_mlvl_label_pred[selected])
cls_scores.append(_mlvl_cls_score[selected])
dir_scores.append(_mlvl_dir_scores[selected])
dir_rot = box_torch_ops.limit_period(
bboxes[-1][..., 6] - self.dir_offset, self.dir_limit_offset,
np.pi)
bboxes[-1][..., 6] = (
dir_rot + self.dir_offset +
np.pi * dir_scores[-1].to(bboxes[-1].dtype))
if bboxes:
bboxes = torch.cat(bboxes, dim=0)
scores = torch.cat(scores, dim=0)
cls_scores = torch.cat(cls_scores, dim=0)
labels = torch.cat(labels, dim=0)
dir_scores = torch.cat(dir_scores, dim=0)
if bboxes.shape[0] > max_num:
_, inds = scores.sort(descending=True)
inds = inds[:max_num]
bboxes = bboxes[inds, :]
labels = labels[inds]
scores = scores[inds]
cls_scores = cls_scores[inds]
dir_scores = dir_scores[inds]
return dict(
box3d_lidar=bboxes.cpu(),
scores=scores.cpu(),
label_preds=labels.cpu(),
cls_preds=cls_scores.cpu(
) # raw scores with shape [max_num, cls_num]
)
else:
return dict(
box3d_lidar=mlvl_bboxes.new_zeros([0,
self.box_code_size]).cpu(),
scores=mlvl_bboxes.new_zeros([0]).cpu(),
label_preds=mlvl_bboxes.new_zeros([0]).cpu(),
cls_preds=mlvl_bboxes.new_zeros([0, mlvl_cls_score.shape[-1]
]).cpu())
from __future__ import division
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import normal_init
from mmcv.cnn import bias_init_with_prob, normal_init
from mmdet3d.core import (PseudoSampler, box_torch_ops,
boxes3d_to_bev_torch_lidar, build_anchor_generator,
......@@ -12,24 +10,37 @@ from mmdet3d.core import (PseudoSampler, box_torch_ops,
from mmdet3d.ops.iou3d.iou3d_utils import nms_gpu, nms_normal_gpu
from mmdet.models import HEADS
from ..builder import build_loss
from ..utils import bias_init_with_prob
from .train_mixins import AnchorTrainMixin
@HEADS.register_module
@HEADS.register_module()
class SECONDHead(nn.Module, AnchorTrainMixin):
"""Anchor-based head (RPN, RetinaNet, SSD, etc.).
"""Anchor-based head for VoxelNet detectors.
Args:
class_name (list[str]): name of classes (TODO: to be removed)
in_channels (int): Number of channels in the input feature map.
train_cfg (dict): train configs
test_cfg (dict): test configs
feat_channels (int): Number of channels of the feature map.
anchor_scales (Iterable): Anchor scales.
anchor_ratios (Iterable): Anchor aspect ratios.
anchor_strides (Iterable): Anchor strides.
anchor_base_sizes (Iterable): Anchor base sizes.
target_means (Iterable): Mean values of regression targets.
target_stds (Iterable): Std values of regression targets.
use_direction_classifier (bool): Whether to add a direction classifier.
encode_bg_as_zeros (bool): Whether to use sigmoid of softmax
(TODO: to be removed)
box_code_size (int): The size of box code.
anchor_generator(dict): Config dict of anchor generator.
assigner_per_size (bool): Whether to do assignment for each separate
anchor size.
assign_per_class (bool): Whether to do assignment for each class.
diff_rad_by_sin (bool): Whether to change the difference into sin
difference for box regression loss.
dir_offset (float | int): The offset of BEV rotation angles
(TODO: may be moved into box coder)
dirlimit_offset (float | int): The limited range of BEV rotation angles
(TODO: may be moved into box coder)
box_coder (dict): Config dict of box coders.
loss_cls (dict): Config of classification loss.
loss_bbox (dict): Config of localization loss.
loss_dir (dict): Config of direction classifier loss.
""" # noqa: W605
def __init__(self,
......@@ -37,25 +48,24 @@ class SECONDHead(nn.Module, AnchorTrainMixin):
in_channels,
train_cfg,
test_cfg,
cache_anchor=False,
feat_channels=256,
use_direction_classifier=True,
encode_bg_as_zeros=False,
box_code_size=7,
anchor_generator=dict(type='AnchorGeneratorRange'),
anchor_range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
anchor_strides=[2],
anchor_sizes=[[1.6, 3.9, 1.56]],
anchor_rotations=[0, 1.57],
anchor_custom_values=[],
anchor_generator=dict(
type='Anchor3DRangeGenerator',
range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
strides=[2],
sizes=[[1.6, 3.9, 1.56]],
rotations=[0, 1.57],
custom_values=[],
reshape_out=False),
assigner_per_size=False,
assign_per_class=False,
diff_rad_by_sin=True,
dir_offset=0,
dir_limit_offset=1,
target_means=(.0, .0, .0, .0),
target_stds=(1.0, 1.0, 1.0, 1.0),
bbox_coder=dict(type='Residual3DBoxCoder'),
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
......@@ -94,29 +104,9 @@ class SECONDHead(nn.Module, AnchorTrainMixin):
]
# build anchor generator
self.anchor_range = anchor_range
self.anchor_rotations = anchor_rotations
self.anchor_strides = anchor_strides
self.anchor_sizes = anchor_sizes
self.target_means = target_means
self.target_stds = target_stds
self.anchor_generators = []
self.anchor_generator = build_anchor_generator(anchor_generator)
# In 3D detection, the anchor stride is connected with anchor size
self.num_anchors = (
len(self.anchor_rotations) * len(self.anchor_sizes))
# if len(self.anchor_sizes) != self.anchor_strides:
# # this means different anchor in the same anchor strides
# anchor_sizes = [self.anchor_sizes]
for anchor_stride in self.anchor_strides:
anchor_generator.update(
anchor_ranges=anchor_range,
sizes=self.anchor_sizes,
stride=anchor_stride,
rotations=anchor_rotations,
custom_values=anchor_custom_values,
cache_anchor=cache_anchor)
self.anchor_generators.append(
build_anchor_generator(anchor_generator))
self.num_anchors = self.anchor_generator.num_base_anchors
self._init_layers()
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
......@@ -152,7 +142,7 @@ class SECONDHead(nn.Module, AnchorTrainMixin):
def forward(self, feats):
return multi_apply(self.forward_single, feats)
def get_anchors(self, featmap_sizes, input_metas):
def get_anchors(self, featmap_sizes, input_metas, device='cuda'):
"""Get anchors according to feature map sizes.
Args:
featmap_sizes (list[tuple]): Multi-level feature map sizes.
......@@ -161,16 +151,10 @@ class SECONDHead(nn.Module, AnchorTrainMixin):
tuple: anchors of each image, valid flags of each image
"""
num_imgs = len(input_metas)
num_levels = len(featmap_sizes)
# since feature map sizes of all images are the same, we only compute
# anchors for one time
multi_level_anchors = []
for i in range(num_levels):
anchors = self.anchor_generators[i].grid_anchors(featmap_sizes[i])
if not self.assigner_per_size:
anchors = anchors.reshape(-1, anchors.size(-1))
multi_level_anchors.append(anchors)
multi_level_anchors = self.anchor_generator.grid_anchors(
featmap_sizes, device=device)
anchor_list = [multi_level_anchors for _ in range(num_imgs)]
return anchor_list
......@@ -237,16 +221,15 @@ class SECONDHead(nn.Module, AnchorTrainMixin):
input_metas,
gt_bboxes_ignore=None):
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == len(self.anchor_generators)
anchor_list = self.get_anchors(featmap_sizes, input_metas)
assert len(featmap_sizes) == self.anchor_generator.num_levels
device = cls_scores[0].device
anchor_list = self.get_anchors(
featmap_sizes, input_metas, device=device)
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
cls_reg_targets = self.anchor_target_3d(
anchor_list,
gt_bboxes,
input_metas,
self.target_means,
self.target_stds,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
num_classes=self.num_classes,
......@@ -288,12 +271,14 @@ class SECONDHead(nn.Module, AnchorTrainMixin):
assert len(cls_scores) == len(bbox_preds)
assert len(cls_scores) == len(dir_cls_preds)
num_levels = len(cls_scores)
featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
device = cls_scores[0].device
mlvl_anchors = self.anchor_generator.grid_anchors(
featmap_sizes, device=device)
mlvl_anchors = [
self.anchor_generators[i].grid_anchors(
cls_scores[i].size()[-2:]).reshape(-1, self.box_code_size)
for i in range(num_levels)
anchor.reshape(-1, self.box_code_size) for anchor in mlvl_anchors
]
result_list = []
for img_id in range(len(input_metas)):
cls_score_list = [
......@@ -353,9 +338,7 @@ class SECONDHead(nn.Module, AnchorTrainMixin):
bbox_pred = bbox_pred[thr_inds]
scores = scores[thr_inds]
dir_cls_scores = dir_cls_score[thr_inds]
bboxes = self.bbox_coder.decode_torch(anchors, bbox_pred,
self.target_means,
self.target_stds)
bboxes = self.bbox_coder.decode(anchors, bbox_pred)
bboxes_for_nms = boxes3d_to_bev_torch_lidar(bboxes)
mlvl_bboxes_for_nms.append(bboxes_for_nms)
mlvl_bboxes.append(bboxes)
......@@ -383,6 +366,7 @@ class SECONDHead(nn.Module, AnchorTrainMixin):
selected_scores = mlvl_scores[selected]
selected_label_preds = mlvl_label_preds[selected]
selected_dir_scores = mlvl_dir_scores[selected]
# TODO: move dir_offset to box coder
dir_rot = box_torch_ops.limit_period(
selected_bboxes[..., -1] - self.dir_offset,
self.dir_limit_offset, np.pi)
......
......@@ -11,8 +11,6 @@ class AnchorTrainMixin(object):
anchor_list,
gt_bboxes_list,
input_metas,
target_means,
target_stds,
gt_bboxes_ignore_list=None,
gt_labels_list=None,
label_channels=1,
......@@ -24,8 +22,6 @@ class AnchorTrainMixin(object):
anchor_list (list[list]): Multi level anchors of each image.
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
img_metas (list[dict]): Meta info of each image.
target_means (Iterable): Mean value of regression targets.
target_stds (Iterable): Std value of regression targets.
Returns:
tuple
......@@ -57,8 +53,6 @@ class AnchorTrainMixin(object):
gt_bboxes_ignore_list,
gt_labels_list,
input_metas,
target_means=target_means,
target_stds=target_stds,
label_channels=label_channels,
num_classes=num_classes,
sampling=sampling)
......@@ -89,8 +83,6 @@ class AnchorTrainMixin(object):
gt_bboxes_ignore,
gt_labels,
input_meta,
target_means,
target_stds,
label_channels=1,
num_classes=1,
sampling=True):
......@@ -111,13 +103,12 @@ class AnchorTrainMixin(object):
anchor_targets = self.anchor_target_single_assigner(
assigner, current_anchors, gt_bboxes[gt_per_cls, :],
gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta,
target_means, target_stds, label_channels, num_classes,
sampling)
label_channels, num_classes, sampling)
else:
anchor_targets = self.anchor_target_single_assigner(
assigner, current_anchors, gt_bboxes, gt_bboxes_ignore,
gt_labels, input_meta, target_means, target_stds,
label_channels, num_classes, sampling)
gt_labels, input_meta, label_channels, num_classes,
sampling)
(labels, label_weights, bbox_targets, bbox_weights,
dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets
......@@ -156,8 +147,7 @@ class AnchorTrainMixin(object):
else:
return self.anchor_target_single_assigner(
self.bbox_assigner, anchors, gt_bboxes, gt_bboxes_ignore,
gt_labels, input_meta, target_means, target_stds,
label_channels, num_classes, sampling)
gt_labels, input_meta, label_channels, num_classes, sampling)
def anchor_target_single_assigner(self,
bbox_assigner,
......@@ -166,8 +156,6 @@ class AnchorTrainMixin(object):
gt_bboxes_ignore,
gt_labels,
input_meta,
target_means,
target_stds,
label_channels=1,
num_classes=1,
sampling=True):
......@@ -188,18 +176,17 @@ class AnchorTrainMixin(object):
neg_inds = sampling_result.neg_inds
else:
pos_inds = torch.nonzero(
anchors.new_zeros((anchors.shape[0], ), dtype=torch.long) > 0
anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) > 0
).squeeze(-1).unique()
neg_inds = torch.nonzero(
anchors.new_zeros((anchors.shape[0], ), dtype=torch.long) ==
anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) ==
0).squeeze(-1).unique()
if gt_labels is not None:
labels += num_classes
if len(pos_inds) > 0:
pos_bbox_targets = self.bbox_coder.encode_torch(
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes,
target_means, target_stds)
pos_bbox_targets = self.bbox_coder.encode(
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
pos_dir_targets = get_direction_target(
sampling_result.pos_bboxes,
pos_bbox_targets,
......
from functools import partial
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.runner import load_checkpoint
from mmdet.models import BACKBONES
from mmdet.ops import build_norm_layer
class Empty(nn.Module):
......@@ -20,7 +20,7 @@ class Empty(nn.Module):
return args
@BACKBONES.register_module
@BACKBONES.register_module()
class SECOND(nn.Module):
"""Compare with RPN, RPNV2 support arbitrary number of stage.
"""
......@@ -72,7 +72,7 @@ class SECOND(nn.Module):
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
from mmdet3d.apis import get_root_logger
from mmdet3d.utils import get_root_logger
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
......
from mmdet.models.builder import build
from mmdet.models.registry import (BACKBONES, DETECTORS, HEADS, LOSSES, NECKS,
ROI_EXTRACTORS, SHARED_HEADS)
from mmdet.models.builder import (BACKBONES, DETECTORS, HEADS, LOSSES, NECKS,
ROI_EXTRACTORS, SHARED_HEADS, build)
from .registry import FUSION_LAYERS, MIDDLE_ENCODERS, VOXEL_ENCODERS
......
......@@ -3,10 +3,11 @@ from .mvx_faster_rcnn import (DynamicMVXFasterRCNN, DynamicMVXFasterRCNNV2,
DynamicMVXFasterRCNNV3)
from .mvx_single_stage import MVXSingleStageDetector
from .mvx_two_stage import MVXTwoStageDetector
from .parta2 import PartA2
from .voxelnet import DynamicVoxelNet, VoxelNet
__all__ = [
'BaseDetector', 'VoxelNet', 'DynamicVoxelNet', 'MVXSingleStageDetector',
'MVXTwoStageDetector', 'DynamicMVXFasterRCNN', 'DynamicMVXFasterRCNNV2',
'DynamicMVXFasterRCNNV3'
'DynamicMVXFasterRCNNV3', 'PartA2'
]
......@@ -59,7 +59,7 @@ class BaseDetector(nn.Module, metaclass=ABCMeta):
def init_weights(self, pretrained=None):
if pretrained is not None:
from mmdet3d.apis import get_root_logger
from mmdet3d.utils import get_root_logger
logger = get_root_logger()
logger.info('load model from: {}'.format(pretrained))
......
......@@ -5,7 +5,7 @@ from mmdet.models import DETECTORS
from .mvx_two_stage import MVXTwoStageDetector
@DETECTORS.register_module
@DETECTORS.register_module()
class DynamicMVXFasterRCNN(MVXTwoStageDetector):
def __init__(self, **kwargs):
......@@ -42,7 +42,7 @@ class DynamicMVXFasterRCNN(MVXTwoStageDetector):
return points, coors_batch
@DETECTORS.register_module
@DETECTORS.register_module()
class DynamicMVXFasterRCNNV2(DynamicMVXFasterRCNN):
def __init__(self, **kwargs):
......@@ -62,7 +62,7 @@ class DynamicMVXFasterRCNNV2(DynamicMVXFasterRCNN):
return x
@DETECTORS.register_module
@DETECTORS.register_module()
class MVXFasterRCNNV2(MVXTwoStageDetector):
def __init__(self, **kwargs):
......@@ -84,7 +84,7 @@ class MVXFasterRCNNV2(MVXTwoStageDetector):
return x
@DETECTORS.register_module
@DETECTORS.register_module()
class DynamicMVXFasterRCNNV3(DynamicMVXFasterRCNN):
def __init__(self, **kwargs):
......
......@@ -8,7 +8,7 @@ from .. import builder
from .base import BaseDetector
@DETECTORS.register_module
@DETECTORS.register_module()
class MVXSingleStageDetector(BaseDetector):
def __init__(self,
......@@ -162,7 +162,7 @@ class MVXSingleStageDetector(BaseDetector):
raise NotImplementedError
@DETECTORS.register_module
@DETECTORS.register_module()
class DynamicMVXNet(MVXSingleStageDetector):
def __init__(self,
......@@ -230,7 +230,7 @@ class DynamicMVXNet(MVXSingleStageDetector):
return points, coors_batch
@DETECTORS.register_module
@DETECTORS.register_module()
class DynamicMVXNetV2(DynamicMVXNet):
def __init__(self,
......@@ -281,7 +281,7 @@ class DynamicMVXNetV2(DynamicMVXNet):
return x
@DETECTORS.register_module
@DETECTORS.register_module()
class DynamicMVXNetV3(DynamicMVXNet):
def __init__(self,
......
......@@ -8,7 +8,7 @@ from .. import builder
from .base import BaseDetector
@DETECTORS.register_module
@DETECTORS.register_module()
class MVXTwoStageDetector(BaseDetector):
def __init__(self,
......
import torch
import torch.nn.functional as F
from mmdet3d.ops import Voxelization
from mmdet.models import DETECTORS, TwoStageDetector
from .. import builder
@DETECTORS.register_module()
class PartA2(TwoStageDetector):
def __init__(self,
voxel_layer,
voxel_encoder,
middle_encoder,
backbone,
neck=None,
rpn_head=None,
roi_head=None,
train_cfg=None,
test_cfg=None,
pretrained=None):
super(PartA2, self).__init__(
backbone=backbone,
neck=neck,
rpn_head=rpn_head,
roi_head=roi_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
pretrained=pretrained,
)
self.voxel_layer = Voxelization(**voxel_layer)
self.voxel_encoder = builder.build_voxel_encoder(voxel_encoder)
self.middle_encoder = builder.build_middle_encoder(middle_encoder)
def extract_feat(self, points, img_meta):
voxels, num_points, coors = self.voxelize(points)
voxel_dict = dict(voxels=voxels, num_points=num_points, coors=coors)
voxel_features = self.voxel_encoder(voxels, num_points, coors)
batch_size = coors[-1, 0].item() + 1
feats_dict = self.middle_encoder(voxel_features, coors, batch_size)
x = self.backbone(feats_dict['spatial_features'])
if self.with_neck:
neck_feats = self.neck(x)
feats_dict.update({'neck_feats': neck_feats})
return feats_dict, voxel_dict
@torch.no_grad()
def voxelize(self, points):
voxels, coors, num_points = [], [], []
for res in points:
res_voxels, res_coors, res_num_points = self.voxel_layer(res)
voxels.append(res_voxels)
coors.append(res_coors)
num_points.append(res_num_points)
voxels = torch.cat(voxels, dim=0)
num_points = torch.cat(num_points, dim=0)
coors_batch = []
for i, coor in enumerate(coors):
coor_pad = F.pad(coor, (1, 0), mode='constant', value=i)
coors_batch.append(coor_pad)
coors_batch = torch.cat(coors_batch, dim=0)
return voxels, num_points, coors_batch
def forward_train(self,
points,
img_meta,
gt_bboxes_3d,
gt_labels_3d,
gt_bboxes_ignore=None,
proposals=None):
# TODO: complete it
feats_dict, voxels_dict = self.extract_feat(points, img_meta)
losses = dict()
if self.with_rpn:
rpn_outs = self.rpn_head(feats_dict['neck_feats'])
rpn_loss_inputs = rpn_outs + (gt_bboxes_3d, gt_labels_3d, img_meta)
rpn_losses = self.rpn_head.loss(
*rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
losses.update(rpn_losses)
proposal_cfg = self.train_cfg.get('rpn_proposal',
self.test_cfg.rpn)
proposal_inputs = rpn_outs + (img_meta, proposal_cfg)
proposal_list = self.rpn_head.get_bboxes(*proposal_inputs)
else:
proposal_list = proposals # noqa: F841
return losses
def forward_test(self, **kwargs):
return self.simple_test(**kwargs)
def forward(self, return_loss=True, **kwargs):
if return_loss:
return self.forward_train(**kwargs)
else:
return self.forward_test(**kwargs)
def simple_test(self,
points,
img_meta,
gt_bboxes_3d=None,
proposals=None,
rescale=False):
feats_dict, voxels_dict = self.extract_feat(points, img_meta)
# TODO: complete it
if proposals is None:
proposal_list = self.simple_test_rpn(feats_dict['neck_feats'],
img_meta, self.test_cfg.rpn)
else:
proposal_list = proposals
return self.roi_head.simple_test(
feats_dict, proposal_list, img_meta, rescale=rescale)
......@@ -6,7 +6,7 @@ from mmdet.models import DETECTORS, SingleStageDetector
from .. import builder
@DETECTORS.register_module
@DETECTORS.register_module()
class VoxelNet(SingleStageDetector):
def __init__(self,
......@@ -88,7 +88,7 @@ class VoxelNet(SingleStageDetector):
return bbox_list
@DETECTORS.register_module
@DETECTORS.register_module()
class DynamicVoxelNet(VoxelNet):
def __init__(self,
......
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import xavier_init
from mmcv.cnn import ConvModule, xavier_init
from mmdet.ops import ConvModule
from ..registry import FUSION_LAYERS
......@@ -96,7 +95,7 @@ def point_sample(
return point_features.squeeze().t()
@FUSION_LAYERS.register_module
@FUSION_LAYERS.register_module()
class PointFusion(nn.Module):
"""Fuse image features from fused single scale features
"""
......@@ -235,9 +234,8 @@ class PointFusion(nn.Module):
pts.new_tensor(img_meta['pcd_trans'])
if 'pcd_trans' in img_meta.keys() else 0)
pcd_rotate_mat = (
pts.new_tensor(img_meta['pcd_rotation'])
if 'pcd_rotation' in img_meta.keys() else
torch.eye(3).type_as(pts).to(pts.device))
pts.new_tensor(img_meta['pcd_rotation']) if 'pcd_rotation'
in img_meta.keys() else torch.eye(3).type_as(pts).to(pts.device))
img_scale_factor = (
img_meta['scale_factor']
if 'scale_factor' in img_meta.keys() else 1)
......
from mmdet.models.losses import FocalLoss, SmoothL1Loss
from mmdet.models.losses import FocalLoss, SmoothL1Loss, binary_cross_entropy
__all__ = ['FocalLoss', 'SmoothL1Loss']
__all__ = ['FocalLoss', 'SmoothL1Loss', 'binary_cross_entropy']
from .pillar_scatter import PointPillarsScatter
from .sparse_encoder import SparseEncoder
from .sparse_unet import SparseUNet
__all__ = ['PointPillarsScatter', 'SparseEncoder']
__all__ = ['PointPillarsScatter', 'SparseEncoder', 'SparseUNet']
......@@ -4,7 +4,7 @@ from torch import nn
from ..registry import MIDDLE_ENCODERS
@MIDDLE_ENCODERS.register_module
@MIDDLE_ENCODERS.register_module()
class PointPillarsScatter(nn.Module):
def __init__(self, in_channels, output_shape):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment