Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
3c5ff9fa
Commit
3c5ff9fa
authored
Jun 17, 2020
by
zhangwenwei
Browse files
Support test time augmentation
parent
f6e95edd
Changes
72
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
809 additions
and
261 deletions
+809
-261
configs/_base_/datasets/kitti-3d-3class.py
configs/_base_/datasets/kitti-3d-3class.py
+119
-0
configs/_base_/datasets/kitti-3d-car.py
configs/_base_/datasets/kitti-3d-car.py
+117
-0
configs/_base_/datasets/nus-3d.py
configs/_base_/datasets/nus-3d.py
+52
-11
configs/_base_/datasets/scannet-3d-18class.py
configs/_base_/datasets/scannet-3d-18class.py
+20
-4
configs/_base_/datasets/sunrgbd-3d-10class.py
configs/_base_/datasets/sunrgbd-3d-10class.py
+20
-4
configs/_base_/default_runtime.py
configs/_base_/default_runtime.py
+3
-1
configs/_base_/models/hv_pointpillars_secfpn.py
configs/_base_/models/hv_pointpillars_secfpn.py
+91
-0
configs/_base_/models/hv_second_secfpn.py
configs/_base_/models/hv_second_secfpn.py
+87
-0
configs/_base_/models/pointpillars_second_fpn.py
configs/_base_/models/pointpillars_second_fpn.py
+96
-0
configs/_base_/schedules/cyclic_40e.py
configs/_base_/schedules/cyclic_40e.py
+31
-0
configs/_base_/schedules/schedule_2x.py
configs/_base_/schedules/schedule_2x.py
+1
-0
configs/_base_/schedules/schedule_3x.py
configs/_base_/schedules/schedule_3x.py
+2
-0
configs/benchmark/hv_pointpillars_secfpn_6x8_160e_pcdet_kitti-3d-3class.py
.../hv_pointpillars_secfpn_6x8_160e_pcdet_kitti-3d-3class.py
+24
-10
configs/benchmark/hv_second_secfpn_6x8_80e_pcdet_kitti-3d-3class.py
...nchmark/hv_second_secfpn_6x8_80e_pcdet_kitti-3d-3class.py
+24
-10
configs/dynamic_voxelization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py
...elization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py
+19
-0
configs/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py
...zation/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py
+35
-0
configs/dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py
...mic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py
+18
-0
configs/mvxnet/dv_mvx-v2_second_secfpn_fpn-fusion_adamw_2x8_80e_kitti-3d-3class.py
...second_secfpn_fpn-fusion_adamw_2x8_80e_kitti-3d-3class.py
+26
-22
configs/mvxnet/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py
...gs/mvxnet/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py
+0
-189
configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py
...parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py
+24
-10
No files found.
configs/
second/dv_second_secfpn_6x8_80e_
kitti-3d-
car
.py
→
configs/
_base_/datasets/
kitti-3d-
3class
.py
View file @
3c5ff9fa
# model settings
voxel_size
=
[
0.05
,
0.05
,
0.1
]
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
# velodyne coordinates, x, y, z
model
=
dict
(
type
=
'DynamicVoxelNet'
,
voxel_layer
=
dict
(
max_num_points
=-
1
,
# max_points_per_voxel
point_cloud_range
=
point_cloud_range
,
voxel_size
=
voxel_size
,
max_voxels
=
(
-
1
,
-
1
)
# (training, testing) max_coxels
),
voxel_encoder
=
dict
(
type
=
'DynamicSimpleVFE'
,
voxel_size
=
voxel_size
,
point_cloud_range
=
point_cloud_range
),
middle_encoder
=
dict
(
type
=
'SparseEncoder'
,
in_channels
=
4
,
sparse_shape
=
[
41
,
1600
,
1408
],
order
=
(
'conv'
,
'norm'
,
'act'
)),
backbone
=
dict
(
type
=
'SECOND'
,
in_channels
=
256
,
layer_nums
=
[
5
,
5
],
layer_strides
=
[
1
,
2
],
out_channels
=
[
128
,
256
]),
neck
=
dict
(
type
=
'SECONDFPN'
,
in_channels
=
[
128
,
256
],
upsample_strides
=
[
1
,
2
],
out_channels
=
[
256
,
256
]),
bbox_head
=
dict
(
type
=
'Anchor3DHead'
,
num_classes
=
1
,
in_channels
=
512
,
feat_channels
=
512
,
use_direction_classifier
=
True
,
anchor_generator
=
dict
(
type
=
'Anchor3DRangeGenerator'
,
ranges
=
[[
0
,
-
40.0
,
-
1.78
,
70.4
,
40.0
,
-
1.78
]],
sizes
=
[[
1.6
,
3.9
,
1.56
]],
rotations
=
[
0
,
1.57
],
reshape_out
=
True
),
diff_rad_by_sin
=
True
,
bbox_coder
=
dict
(
type
=
'DeltaXYZWLHRBBoxCoder'
),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
2.0
),
loss_dir
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.2
)))
# model training and testing settings
train_cfg
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
iou_calculator
=
dict
(
type
=
'BboxOverlapsNearest3D'
),
pos_iou_thr
=
0.6
,
neg_iou_thr
=
0.45
,
min_pos_iou
=
0.45
,
ignore_iof_thr
=-
1
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
)
test_cfg
=
dict
(
use_rotate_nms
=
True
,
nms_across_levels
=
False
,
nms_thr
=
0.01
,
score_thr
=
0.1
,
min_bbox_size
=
0
,
nms_pre
=
100
,
max_num
=
50
)
# dataset settings
dataset_type
=
'KittiDataset'
data_root
=
'data/kitti/'
class_names
=
[
'Car'
]
class_names
=
[
'Pedestrian'
,
'Cyclist'
,
'Car'
]
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
db_sampler
=
dict
(
data_root
=
data_root
,
...
...
@@ -86,39 +11,72 @@ db_sampler = dict(
object_rot_range
=
[
0.0
,
0.0
],
prepare
=
dict
(
filter_by_difficulty
=
[
-
1
],
filter_by_min_points
=
dict
(
Car
=
5
),
),
sample_groups
=
dict
(
Car
=
15
),
classes
=
class_names
)
filter_by_min_points
=
dict
(
Car
=
5
,
Pedestrian
=
10
,
Cyclist
=
10
)),
classes
=
class_names
,
sample_groups
=
dict
(
Car
=
12
,
Pedestrian
=
6
,
Cyclist
=
6
))
file_client_args
=
dict
(
backend
=
'disk'
)
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# file_client_args = dict(
# backend='petrel', path_mapping=dict(data='s3://kitti_data/'))
train_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
),
dict
(
type
=
'LoadAnnotations3D'
,
with_bbox_3d
=
True
,
with_label_3d
=
True
),
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
,
file_client_args
=
file_client_args
),
dict
(
type
=
'LoadAnnotations3D'
,
with_bbox_3d
=
True
,
with_label_3d
=
True
,
file_client_args
=
file_client_args
),
dict
(
type
=
'ObjectSample'
,
db_sampler
=
db_sampler
),
dict
(
type
=
'ObjectNoise'
,
num_try
=
100
,
loc_noise
_std
=
[
1.0
,
1.0
,
0.5
],
translation
_std
=
[
1.0
,
1.0
,
0.5
],
global_rot_range
=
[
0.0
,
0.0
],
rot_
uniform_nois
e
=
[
-
0.78539816
,
0.78539816
]),
rot_
rang
e
=
[
-
0.78539816
,
0.78539816
]),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0.5
),
dict
(
type
=
'GlobalRotScale'
,
rot_
uniform_nois
e
=
[
-
0.78539816
,
0.78539816
],
scal
ing_uniform_nois
e
=
[
0.95
,
1.05
]),
type
=
'GlobalRotScale
Trans
'
,
rot_
rang
e
=
[
-
0.78539816
,
0.78539816
],
scal
e_ratio_rang
e
=
[
0.95
,
1.05
]),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
,
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
,
file_client_args
=
file_client_args
),
dict
(
type
=
'MultiScaleFlipAug3D'
,
img_scale
=
(
1333
,
800
),
pts_scale_ratio
=
1
,
flip
=
False
,
transforms
=
[
dict
(
type
=
'GlobalRotScaleTrans'
,
rot_range
=
[
0
,
0
],
scale_ratio_range
=
[
1.
,
1.
],
translation_std
=
[
0
,
0
,
0
]),
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
]),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
]
data
=
dict
(
...
...
@@ -157,37 +115,5 @@ data = dict(
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
True
))
# optimizer
lr
=
0.0018
# max learning rate
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
lr
,
betas
=
(
0.95
,
0.99
),
weight_decay
=
0.01
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
10
,
norm_type
=
2
))
lr_config
=
dict
(
policy
=
'cyclic'
,
target_ratio
=
(
10
,
1e-4
),
cyclic_times
=
1
,
step_ratio_up
=
0.4
,
)
momentum_config
=
dict
(
policy
=
'cyclic'
,
target_ratio
=
(
0.85
/
0.95
,
1
),
cyclic_times
=
1
,
step_ratio_up
=
0.4
,
)
checkpoint_config
=
dict
(
interval
=
1
)
evaluation
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
dict
(
type
=
'TensorboardLoggerHook'
)
])
# yapf:enable
# runtime settings
total_epochs
=
40
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/sec_secfpn_80e'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/_base_/datasets/kitti-3d-car.py
0 → 100644
View file @
3c5ff9fa
# dataset settings
dataset_type
=
'KittiDataset'
data_root
=
'data/kitti/'
class_names
=
[
'Car'
]
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
db_sampler
=
dict
(
data_root
=
data_root
,
info_path
=
data_root
+
'kitti_dbinfos_train.pkl'
,
rate
=
1.0
,
object_rot_range
=
[
0.0
,
0.0
],
prepare
=
dict
(
filter_by_difficulty
=
[
-
1
],
filter_by_min_points
=
dict
(
Car
=
5
)),
classes
=
class_names
,
sample_groups
=
dict
(
Car
=
15
))
file_client_args
=
dict
(
backend
=
'disk'
)
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# file_client_args = dict(
# backend='petrel', path_mapping=dict(data='s3://kitti_data/'))
train_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
,
file_client_args
=
file_client_args
),
dict
(
type
=
'LoadAnnotations3D'
,
with_bbox_3d
=
True
,
with_label_3d
=
True
,
file_client_args
=
file_client_args
),
dict
(
type
=
'ObjectSample'
,
db_sampler
=
db_sampler
),
dict
(
type
=
'ObjectNoise'
,
num_try
=
100
,
translation_std
=
[
1.0
,
1.0
,
0.5
],
global_rot_range
=
[
0.0
,
0.0
],
rot_range
=
[
-
0.78539816
,
0.78539816
]),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0.5
),
dict
(
type
=
'GlobalRotScaleTrans'
,
rot_range
=
[
-
0.78539816
,
0.78539816
],
scale_ratio_range
=
[
0.95
,
1.05
]),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
,
file_client_args
=
file_client_args
),
dict
(
type
=
'MultiScaleFlipAug3D'
,
img_scale
=
(
1333
,
800
),
pts_scale_ratio
=
1
,
flip
=
False
,
transforms
=
[
dict
(
type
=
'GlobalRotScaleTrans'
,
rot_range
=
[
0
,
0
],
scale_ratio_range
=
[
1.
,
1.
],
translation_std
=
[
0
,
0
,
0
]),
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
]
data
=
dict
(
samples_per_gpu
=
6
,
workers_per_gpu
=
4
,
train
=
dict
(
type
=
'RepeatDataset'
,
times
=
2
,
dataset
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_train.pkl'
,
split
=
'training'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
train_pipeline
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
False
)),
val
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
split
=
'training'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
True
),
test
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
split
=
'training'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
True
))
evaluation
=
dict
(
interval
=
1
)
configs/_base_/datasets/nus-3d.py
View file @
3c5ff9fa
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range
=
[
-
50
,
-
50
,
-
5
,
50
,
50
,
3
]
# For nuScenes we usually do 10-class detection
class_names
=
[
'car'
,
'truck'
,
'trailer'
,
'bus'
,
'construction_vehicle'
,
'bicycle'
,
'motorcycle'
,
'pedestrian'
,
'traffic_cone'
,
'barrier'
]
dataset_type
=
'NuScenesDataset'
data_root
=
'data/nuscenes/'
file_client_args
=
dict
(
backend
=
'disk'
)
# Input modality for nuScenes dataset, this is consistent with the submission
# format which requires the information in input_modality.
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
,
use_radar
=
False
,
use_map
=
False
,
use_external
=
False
)
# file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
file_client_args
=
dict
(
backend
=
'petrel'
,
path_mapping
=
dict
({
'./data/nuscenes/'
:
's3://nuscenes/nuscenes/'
,
'data/nuscenes/'
:
's3://nuscenes/nuscenes/'
}))
train_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
...
...
@@ -18,10 +38,10 @@ train_pipeline = [
file_client_args
=
file_client_args
),
dict
(
type
=
'LoadAnnotations3D'
,
with_bbox_3d
=
True
,
with_label_3d
=
True
),
dict
(
type
=
'GlobalRotScale'
,
rot_
uniform_nois
e
=
[
-
0.3925
,
0.3925
],
scal
ing_uniform_nois
e
=
[
0.95
,
1.05
],
trans
_normal_noise
=
[
0
,
0
,
0
]),
type
=
'GlobalRotScale
Trans
'
,
rot_
rang
e
=
[
-
0.3925
,
0.3925
],
scal
e_ratio_rang
e
=
[
0.95
,
1.05
],
trans
lation_std
=
[
0
,
0
,
0
]),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0.5
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
...
...
@@ -39,13 +59,26 @@ test_pipeline = [
type
=
'LoadPointsFromMultiSweeps'
,
sweeps_num
=
10
,
file_client_args
=
file_client_args
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0
),
dict
(
type
=
'MultiScaleFlipAug3D'
,
img_scale
=
(
1333
,
800
),
pts_scale_ratio
=
1
,
flip
=
False
,
transforms
=
[
dict
(
type
=
'GlobalRotScaleTrans'
,
rot_range
=
[
0
,
0
],
scale_ratio_range
=
[
1.
,
1.
],
translation_std
=
[
0
,
0
,
0
]),
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
]
data
=
dict
(
...
...
@@ -57,6 +90,7 @@ data = dict(
ann_file
=
data_root
+
'nuscenes_infos_train.pkl'
,
pipeline
=
train_pipeline
,
classes
=
class_names
,
modality
=
input_modality
,
test_mode
=
False
),
val
=
dict
(
type
=
dataset_type
,
...
...
@@ -64,6 +98,7 @@ data = dict(
ann_file
=
data_root
+
'nuscenes_infos_val.pkl'
,
pipeline
=
test_pipeline
,
classes
=
class_names
,
modality
=
input_modality
,
test_mode
=
True
),
test
=
dict
(
type
=
dataset_type
,
...
...
@@ -71,4 +106,10 @@ data = dict(
ann_file
=
data_root
+
'nuscenes_infos_val.pkl'
,
pipeline
=
test_pipeline
,
classes
=
class_names
,
modality
=
input_modality
,
test_mode
=
True
))
# For nuScenes dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation
# interval to be 24. Please change the interval accordingly if you do not
# use a default schedule.
evaluation
=
dict
(
interval
=
24
)
configs/_base_/datasets/scannet-3d-18class.py
View file @
3c5ff9fa
...
...
@@ -24,7 +24,7 @@ train_pipeline = [
dict
(
type
=
'IndoorPointSample'
,
num_points
=
40000
),
dict
(
type
=
'IndoorFlipData'
,
flip_ratio_yz
=
0.5
,
flip_ratio_xz
=
0.5
),
dict
(
type
=
'IndoorGlobalRotScale'
,
type
=
'IndoorGlobalRotScale
Trans
'
,
shift_height
=
True
,
rot_range
=
[
-
1
/
36
,
1
/
36
],
scale_range
=
None
),
...
...
@@ -42,9 +42,25 @@ test_pipeline = [
shift_height
=
True
,
load_dim
=
6
,
use_dim
=
[
0
,
1
,
2
]),
dict
(
type
=
'MultiScaleFlipAug3D'
,
img_scale
=
(
1333
,
800
),
pts_scale_ratio
=
1
,
flip
=
False
,
transforms
=
[
dict
(
type
=
'GlobalRotScaleTrans'
,
rot_range
=
[
0
,
0
],
scale_ratio_range
=
[
1.
,
1.
],
translation_std
=
[
0
,
0
,
0
]),
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'IndoorPointSample'
,
num_points
=
40000
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
]
data
=
dict
(
...
...
configs/_base_/datasets/sunrgbd-3d-10class.py
View file @
3c5ff9fa
...
...
@@ -11,7 +11,7 @@ train_pipeline = [
dict
(
type
=
'LoadAnnotations3D'
),
dict
(
type
=
'IndoorFlipData'
,
flip_ratio_yz
=
0.5
),
dict
(
type
=
'IndoorGlobalRotScale'
,
type
=
'IndoorGlobalRotScale
Trans
'
,
shift_height
=
True
,
rot_range
=
[
-
1
/
6
,
1
/
6
],
scale_range
=
[
0.85
,
1.15
]),
...
...
@@ -25,9 +25,25 @@ test_pipeline = [
shift_height
=
True
,
load_dim
=
6
,
use_dim
=
[
0
,
1
,
2
]),
dict
(
type
=
'MultiScaleFlipAug3D'
,
img_scale
=
(
1333
,
800
),
pts_scale_ratio
=
1
,
flip
=
False
,
transforms
=
[
dict
(
type
=
'GlobalRotScaleTrans'
,
rot_range
=
[
0
,
0
],
scale_ratio_range
=
[
1.
,
1.
],
translation_std
=
[
0
,
0
,
0
]),
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'IndoorPointSample'
,
num_points
=
20000
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
]
data
=
dict
(
...
...
configs/_base_/default_runtime.py
View file @
3c5ff9fa
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable push
# By default we use textlogger hook and tensorboard
# For more loggers see
# https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.LoggerHook
log_config
=
dict
(
interval
=
50
,
hooks
=
[
...
...
configs/
benchmark
/hv_pointpillars_secfpn
_6x8_80e_pcdet_kitti-3d-3class
.py
→
configs/
_base_/models
/hv_pointpillars_secfpn.py
View file @
3c5ff9fa
# model settings
point_cloud_range
=
[
0
,
-
39.68
,
-
3
,
69.12
,
39.68
,
1
]
voxel_size
=
[
0.16
,
0.16
,
4
]
model
=
dict
(
type
=
'VoxelNet'
,
voxel_layer
=
dict
(
max_num_points
=
32
,
# max_points_per_voxel
point_cloud_range
=
point_cloud_range
,
max_num_points
=
32
,
point_cloud_range
=
[
0
,
-
39.68
,
-
3
,
69.12
,
39.68
,
1
]
,
voxel_size
=
voxel_size
,
max_voxels
=
(
16000
,
40000
)
# (training, testing) max_coxels
),
max_voxels
=
(
16000
,
40000
)),
voxel_encoder
=
dict
(
type
=
'PillarFeatureNet'
,
in_channels
=
4
,
feat_channels
=
[
64
],
with_distance
=
False
,
voxel_size
=
voxel_size
,
point_cloud_range
=
point_cloud_range
,
),
point_cloud_range
=
[
0
,
-
39.68
,
-
3
,
69.12
,
39.68
,
1
]),
middle_encoder
=
dict
(
type
=
'PointPillarsScatter'
,
in_channels
=
64
,
output_shape
=
[
496
,
432
],
),
type
=
'PointPillarsScatter'
,
in_channels
=
64
,
output_shape
=
[
496
,
432
]),
backbone
=
dict
(
type
=
'SECOND'
,
in_channels
=
64
,
layer_nums
=
[
3
,
5
,
5
],
layer_strides
=
[
2
,
2
,
2
],
out_channels
=
[
64
,
128
,
256
],
),
out_channels
=
[
64
,
128
,
256
]),
neck
=
dict
(
type
=
'SECONDFPN'
,
in_channels
=
[
64
,
128
,
256
],
upsample_strides
=
[
1
,
2
,
4
],
out_channels
=
[
128
,
128
,
128
],
),
out_channels
=
[
128
,
128
,
128
]),
bbox_head
=
dict
(
type
=
'Anchor3DHead'
,
num_classes
=
3
,
...
...
@@ -44,9 +35,9 @@ model = dict(
anchor_generator
=
dict
(
type
=
'Anchor3DRangeGenerator'
,
ranges
=
[
[
0
,
-
40.0
,
-
0.6
,
70.4
,
40.0
,
-
0.6
],
[
0
,
-
40.0
,
-
0.6
,
70.4
,
40.0
,
-
0.6
],
[
0
,
-
40.0
,
-
1.78
,
70.4
,
40.0
,
-
1.78
],
[
0
,
-
39.68
,
-
0.6
,
70.4
,
39.68
,
-
0.6
],
[
0
,
-
39.68
,
-
0.6
,
70.4
,
39.68
,
-
0.6
],
[
0
,
-
39.68
,
-
1.78
,
70.4
,
39.68
,
-
1.78
],
],
sizes
=
[[
0.6
,
0.8
,
1.73
],
[
0.6
,
1.76
,
1.73
],
[
1.6
,
3.9
,
1.56
]],
rotations
=
[
0
,
1.57
],
...
...
@@ -61,9 +52,7 @@ model = dict(
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
2.0
),
loss_dir
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.2
),
),
)
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.2
)))
# model training and testing settings
train_cfg
=
dict
(
assigner
=
[
...
...
@@ -100,131 +89,3 @@ test_cfg = dict(
min_bbox_size
=
0
,
nms_pre
=
100
,
max_num
=
50
)
# dataset settings
dataset_type
=
'KittiDataset'
data_root
=
'data/kitti/'
class_names
=
[
'Pedestrian'
,
'Cyclist'
,
'Car'
]
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
db_sampler
=
dict
(
data_root
=
data_root
,
info_path
=
data_root
+
'kitti_dbinfos_train.pkl'
,
rate
=
1.0
,
object_rot_range
=
[
0.0
,
0.0
],
prepare
=
dict
(
filter_by_difficulty
=
[
-
1
],
filter_by_min_points
=
dict
(
Car
=
5
,
Pedestrian
=
5
,
Cyclist
=
5
,
)),
classes
=
class_names
,
sample_groups
=
dict
(
Car
=
15
,
Pedestrian
=
10
,
Cyclist
=
10
,
))
train_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
),
dict
(
type
=
'LoadAnnotations3D'
,
with_bbox_3d
=
True
,
with_label_3d
=
True
),
dict
(
type
=
'ObjectSample'
,
db_sampler
=
db_sampler
),
dict
(
type
=
'ObjectNoise'
,
num_try
=
100
,
loc_noise_std
=
[
1.0
,
1.0
,
0.1
],
global_rot_range
=
[
0.0
,
0.0
],
rot_uniform_noise
=
[
-
0.78539816
,
0.78539816
]),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0.5
),
dict
(
type
=
'GlobalRotScale'
,
rot_uniform_noise
=
[
-
0.78539816
,
0.78539816
],
scaling_uniform_noise
=
[
0.95
,
1.05
]),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
]),
]
data
=
dict
(
samples_per_gpu
=
6
,
workers_per_gpu
=
4
,
train
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_train.pkl'
,
split
=
'training'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
train_pipeline
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
False
),
val
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
split
=
'training'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
True
),
test
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
split
=
'training'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
True
))
# optimizer
lr
=
0.001
# max learning rate
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
lr
,
betas
=
(
0.95
,
0.99
),
# the momentum is change during training
weight_decay
=
0.01
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'cyclic'
,
target_ratio
=
(
10
,
1e-4
),
cyclic_times
=
1
,
step_ratio_up
=
0.4
,
)
momentum_config
=
dict
(
policy
=
'cyclic'
,
target_ratio
=
(
0.85
/
0.95
,
1
),
cyclic_times
=
1
,
step_ratio_up
=
0.4
,
)
checkpoint_config
=
dict
(
interval
=
1
)
evaluation
=
dict
(
interval
=
2
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
dict
(
type
=
'TensorboardLoggerHook'
)
])
# yapf:enable
# runtime settings
total_epochs
=
80
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/pp_secfpn_80e'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/
second/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class
.py
→
configs/
_base_/models/hv_second_secfpn
.py
View file @
3c5ff9fa
# model settings
voxel_size
=
[
0.05
,
0.05
,
0.1
]
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
model
=
dict
(
type
=
'
Dynamic
VoxelNet'
,
type
=
'VoxelNet'
,
voxel_layer
=
dict
(
max_num_points
=-
1
,
# max_points_per_voxel
point_cloud_range
=
point_cloud_range
,
voxel_size
=
voxel_size
,
max_voxels
=
(
-
1
,
-
1
)
# (training, testing) max_coxels
),
voxel_encoder
=
dict
(
type
=
'DynamicSimpleVFE'
,
voxel_size
=
voxel_size
,
point_cloud_range
=
point_cloud_range
),
max_num_points
=
5
,
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
],
voxel_size
=
[
0.05
,
0.05
,
0.1
],
max_voxels
=
(
16000
,
40000
)),
voxel_encoder
=
dict
(
type
=
'HardSimpleVFE'
),
middle_encoder
=
dict
(
type
=
'SparseEncoder'
,
in_channels
=
4
,
...
...
@@ -47,8 +39,6 @@ model = dict(
rotations
=
[
0
,
1.57
],
reshape_out
=
False
),
diff_rad_by_sin
=
True
,
assigner_per_size
=
True
,
assign_per_class
=
True
,
bbox_coder
=
dict
(
type
=
'DeltaXYZWLHRBBoxCoder'
),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
...
...
@@ -95,120 +85,3 @@ test_cfg = dict(
min_bbox_size
=
0
,
nms_pre
=
100
,
max_num
=
50
)
# dataset settings
dataset_type
=
'KittiDataset'
data_root
=
'data/kitti/'
class_names
=
[
'Pedestrian'
,
'Cyclist'
,
'Car'
]
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
db_sampler
=
dict
(
data_root
=
data_root
,
info_path
=
data_root
+
'kitti_dbinfos_train.pkl'
,
rate
=
1.0
,
object_rot_range
=
[
0.0
,
0.0
],
prepare
=
dict
(
filter_by_difficulty
=
[
-
1
],
filter_by_min_points
=
dict
(
Car
=
5
,
Pedestrian
=
10
,
Cyclist
=
10
)),
sample_groups
=
dict
(
Car
=
12
,
Pedestrian
=
6
,
Cyclist
=
6
),
classes
=
class_names
)
train_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
),
dict
(
type
=
'LoadAnnotations3D'
,
with_bbox_3d
=
True
,
with_label_3d
=
True
),
dict
(
type
=
'ObjectSample'
,
db_sampler
=
db_sampler
),
dict
(
type
=
'ObjectNoise'
,
num_try
=
100
,
loc_noise_std
=
[
0
,
0
,
0
],
global_rot_range
=
[
0.0
,
0.0
],
rot_uniform_noise
=
[
-
0.39269908
,
0.39269908
]),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0.5
),
dict
(
type
=
'GlobalRotScale'
,
rot_uniform_noise
=
[
-
0.78539816
,
0.78539816
],
scaling_uniform_noise
=
[
0.95
,
1.05
],
trans_normal_noise
=
[
0.2
,
0.2
,
0.2
]),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
]
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
'RepeatDataset'
,
times
=
2
,
dataset
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_train.pkl'
,
split
=
'training'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
train_pipeline
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
False
)),
val
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
split
=
'training'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
True
),
test
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
split
=
'training'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
True
))
# optimizer
lr
=
0.003
# max learning rate
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
lr
,
betas
=
(
0.95
,
0.99
),
# the momentum is change during training
weight_decay
=
0.001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
10
,
norm_type
=
2
))
lr_config
=
dict
(
policy
=
'CosineAnealing'
,
warmup
=
'linear'
,
warmup_iters
=
1000
,
warmup_ratio
=
1.0
/
10
,
min_lr_ratio
=
1e-5
)
momentum_config
=
None
checkpoint_config
=
dict
(
interval
=
1
)
evaluation
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
dict
(
type
=
'TensorboardLoggerHook'
)
])
# yapf:enable
# runtime settings
total_epochs
=
40
dist_params
=
dict
(
backend
=
'nccl'
,
port
=
29502
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/sec_secfpn_80e'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/_base_/models/pointpillars_second_fpn.py
0 → 100644
View file @
3c5ff9fa
# model settings
# Voxel size for voxel encoder
# Usually voxel size is changed consistently with the point cloud range
# If point cloud range is modified, do remember to change all related
# keys in the config.
voxel_size
=
[
0.25
,
0.25
,
8
]
model
=
dict
(
type
=
'MVXFasterRCNNV2'
,
pts_voxel_layer
=
dict
(
max_num_points
=
64
,
point_cloud_range
=
[
-
50
,
-
50
,
-
5
,
50
,
50
,
3
],
voxel_size
=
voxel_size
,
max_voxels
=
(
30000
,
40000
)),
pts_voxel_encoder
=
dict
(
type
=
'HardVFE'
,
in_channels
=
4
,
feat_channels
=
[
64
,
64
],
with_distance
=
False
,
voxel_size
=
voxel_size
,
with_cluster_center
=
True
,
with_voxel_center
=
True
,
point_cloud_range
=
[
-
50
,
-
50
,
-
5
,
50
,
50
,
3
],
norm_cfg
=
dict
(
type
=
'naiveSyncBN1d'
,
eps
=
1e-3
,
momentum
=
0.01
)),
pts_middle_encoder
=
dict
(
type
=
'PointPillarsScatter'
,
in_channels
=
64
,
output_shape
=
[
400
,
400
]),
pts_backbone
=
dict
(
type
=
'SECOND'
,
in_channels
=
64
,
norm_cfg
=
dict
(
type
=
'naiveSyncBN2d'
,
eps
=
1e-3
,
momentum
=
0.01
),
layer_nums
=
[
3
,
5
,
5
],
layer_strides
=
[
2
,
2
,
2
],
out_channels
=
[
64
,
128
,
256
]),
pts_neck
=
dict
(
type
=
'FPN'
,
norm_cfg
=
dict
(
type
=
'naiveSyncBN2d'
,
eps
=
1e-3
,
momentum
=
0.01
),
act_cfg
=
dict
(
type
=
'ReLU'
),
in_channels
=
[
64
,
128
,
256
],
out_channels
=
256
,
start_level
=
0
,
num_outs
=
3
),
pts_bbox_head
=
dict
(
type
=
'Anchor3DHead'
,
num_classes
=
10
,
in_channels
=
256
,
feat_channels
=
256
,
use_direction_classifier
=
True
,
anchor_generator
=
dict
(
type
=
'AlignedAnchor3DRangeGenerator'
,
ranges
=
[[
-
50
,
-
50
,
-
1.8
,
50
,
50
,
-
1.8
]],
scales
=
[
1
,
2
,
4
],
sizes
=
[
[
0.8660
,
2.5981
,
1.
],
# 1.5/sqrt(3)
[
0.5774
,
1.7321
,
1.
],
# 1/sqrt(3)
[
1.
,
1.
,
1.
],
[
0.4
,
0.4
,
1
],
],
custom_values
=
[
0
,
0
],
rotations
=
[
0
,
1.57
],
reshape_out
=
True
),
assigner_per_size
=
False
,
diff_rad_by_sin
=
True
,
dir_offset
=
0.7854
,
# pi/4
dir_limit_offset
=
0
,
bbox_coder
=
dict
(
type
=
'DeltaXYZWLHRBBoxCoder'
,
code_size
=
9
),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
),
loss_dir
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.2
)))
# model training and testing settings
train_cfg
=
dict
(
pts
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
iou_calculator
=
dict
(
type
=
'BboxOverlapsNearest3D'
),
pos_iou_thr
=
0.6
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
allowed_border
=
0
,
code_weight
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
0.2
,
0.2
],
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
pts
=
dict
(
use_rotate_nms
=
True
,
nms_across_levels
=
False
,
nms_pre
=
1000
,
nms_thr
=
0.2
,
score_thr
=
0.05
,
min_bbox_size
=
0
,
max_num
=
500
))
configs/_base_/schedules/cyclic_40e.py
0 → 100644
View file @
3c5ff9fa
# The schedule is usually used by models trained on KITTI dataset
# The learning rate set in the cyclic schedule is the initial learning rate
# rather than the max learning rate. Since the target_ratio is (10, 1e-4),
# the learning rate will change from 0.0018 to 0.018, than go to 0.0018*1e-4
lr
=
0.0018
# The optimizer follows the setting in SECOND.Pytorch, but here we use
# the offcial AdamW optimizer implemented by PyTorch.
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
lr
,
betas
=
(
0.95
,
0.99
),
weight_decay
=
0.01
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
10
,
norm_type
=
2
))
# We use cyclic learning rate and momentum schedule following SECOND.Pytorch
# https://github.com/traveller59/second.pytorch/blob/3aba19c9688274f75ebb5e576f65cfe54773c021/torchplus/train/learning_schedules_fastai.py#L69 # noqa
# We implement them in mmcv, for more details, please refer to
# https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L327 # noqa
# https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/momentum_updater.py#L130 # noqa
lr_config
=
dict
(
policy
=
'cyclic'
,
target_ratio
=
(
10
,
1e-4
),
cyclic_times
=
1
,
step_ratio_up
=
0.4
,
)
momentum_config
=
dict
(
policy
=
'cyclic'
,
target_ratio
=
(
0.85
/
0.95
,
1
),
cyclic_times
=
1
,
step_ratio_up
=
0.4
,
)
# Although the total_epochs is 40, this schedule is usually used we
# RepeatDataset with repeat ratio N, thus the actual total epoch
# number could be Nx40
total_epochs
=
40
configs/_base_/schedules/schedule_2x.py
View file @
3c5ff9fa
# optimizer
# This schedule is mainly used by models on nuScenes dataset
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
0.001
,
weight_decay
=
0.01
)
# max_norm=10 is better for SECOND
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
...
...
configs/_base_/schedules/schedule_3x.py
View file @
3c5ff9fa
# optimizer
# This schedule is mainly used by models on indoor dataset,
# e.g., VoteNet on SUNRGBD and ScanNet
lr
=
0.008
# max learning rate
optimizer
=
dict
(
type
=
'Adam'
,
lr
=
lr
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
10
,
norm_type
=
2
))
...
...
configs/benchmark/hv_pointpillars_secfpn_6x8_160e_pcdet_kitti-3d-3class.py
View file @
3c5ff9fa
...
...
@@ -132,14 +132,14 @@ train_pipeline = [
dict
(
type
=
'ObjectNoise'
,
num_try
=
100
,
loc_noise
_std
=
[
1.0
,
1.0
,
0.1
],
translation
_std
=
[
1.0
,
1.0
,
0.1
],
global_rot_range
=
[
0.0
,
0.0
],
rot_
uniform_nois
e
=
[
-
0.78539816
,
0.78539816
]),
rot_
rang
e
=
[
-
0.78539816
,
0.78539816
]),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0.5
),
dict
(
type
=
'GlobalRotScale'
,
rot_
uniform_nois
e
=
[
-
0.78539816
,
0.78539816
],
scal
ing_uniform_nois
e
=
[
0.95
,
1.05
]),
type
=
'GlobalRotScale
Trans
'
,
rot_
rang
e
=
[
-
0.78539816
,
0.78539816
],
scal
e_ratio_rang
e
=
[
0.95
,
1.05
]),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointShuffle'
),
...
...
@@ -148,12 +148,26 @@ train_pipeline = [
]
test_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'MultiScaleFlipAug3D'
,
img_scale
=
(
1333
,
800
),
pts_scale_ratio
=
1
,
flip
=
False
,
transforms
=
[
dict
(
type
=
'GlobalRotScaleTrans'
,
rot_range
=
[
0
,
0
],
scale_ratio_range
=
[
1.
,
1.
],
translation_std
=
[
0
,
0
,
0
]),
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
]),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
]
data
=
dict
(
...
...
configs/benchmark/hv_second_secfpn_6x8_80e_pcdet_kitti-3d-3class.py
View file @
3c5ff9fa
...
...
@@ -132,14 +132,14 @@ train_pipeline = [
dict
(
type
=
'ObjectNoise'
,
num_try
=
100
,
loc_noise
_std
=
[
1.0
,
1.0
,
0.1
],
translation
_std
=
[
1.0
,
1.0
,
0.1
],
global_rot_range
=
[
0.0
,
0.0
],
rot_
uniform_nois
e
=
[
-
0.78539816
,
0.78539816
]),
rot_
rang
e
=
[
-
0.78539816
,
0.78539816
]),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0.5
),
dict
(
type
=
'GlobalRotScale'
,
rot_
uniform_nois
e
=
[
-
0.78539816
,
0.78539816
],
scal
ing_uniform_nois
e
=
[
0.95
,
1.05
]),
type
=
'GlobalRotScale
Trans
'
,
rot_
rang
e
=
[
-
0.78539816
,
0.78539816
],
scal
e_ratio_rang
e
=
[
0.95
,
1.05
]),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointShuffle'
),
...
...
@@ -152,12 +152,26 @@ test_pipeline = [
load_dim
=
4
,
use_dim
=
4
,
file_client_args
=
file_client_args
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'MultiScaleFlipAug3D'
,
img_scale
=
(
1333
,
800
),
pts_scale_ratio
=
1
,
flip
=
False
,
transforms
=
[
dict
(
type
=
'GlobalRotScaleTrans'
,
rot_range
=
[
0
,
0
],
scale_ratio_range
=
[
1.
,
1.
],
translation_std
=
[
0
,
0
,
0
]),
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
]
data
=
dict
(
...
...
configs/dynamic_voxelization/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py
0 → 100644
View file @
3c5ff9fa
_base_
=
'../pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py'
voxel_size
=
[
0.16
,
0.16
,
4
]
point_cloud_range
=
[
0
,
-
39.68
,
-
3
,
69.12
,
39.68
,
1
]
model
=
dict
(
type
=
'DynamicVoxelNet'
,
voxel_layer
=
dict
(
max_num_points
=-
1
,
point_cloud_range
=
point_cloud_range
,
voxel_size
=
voxel_size
,
max_voxels
=
(
-
1
,
-
1
)),
voxel_encoder
=
dict
(
type
=
'DynamicPillarFeatureNet'
,
in_channels
=
4
,
feat_channels
=
[
64
],
with_distance
=
False
,
voxel_size
=
voxel_size
,
point_cloud_range
=
point_cloud_range
))
configs/dynamic_voxelization/dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py
0 → 100644
View file @
3c5ff9fa
_base_
=
'../second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py'
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
voxel_size
=
[
0.05
,
0.05
,
0.1
]
model
=
dict
(
type
=
'DynamicVoxelNet'
,
voxel_layer
=
dict
(
_delete_
=
True
,
max_num_points
=-
1
,
point_cloud_range
=
point_cloud_range
,
voxel_size
=
voxel_size
,
max_voxels
=
(
-
1
,
-
1
)),
voxel_encoder
=
dict
(
_delete_
=
True
,
type
=
'DynamicSimpleVFE'
,
voxel_size
=
voxel_size
,
point_cloud_range
=
point_cloud_range
))
# optimizer
lr
=
0.003
# max learning rate
optimizer
=
dict
(
_delete_
=
True
,
type
=
'AdamW'
,
lr
=
lr
,
betas
=
(
0.95
,
0.99
),
# the momentum is change during training
weight_decay
=
0.001
)
lr_config
=
dict
(
_delete_
=
True
,
policy
=
'CosineAnealing'
,
warmup
=
'linear'
,
warmup_iters
=
1000
,
warmup_ratio
=
1.0
/
10
,
min_lr_ratio
=
1e-5
)
momentum_config
=
None
configs/dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py
0 → 100644
View file @
3c5ff9fa
_base_
=
'../second/hv_second_secfpn_6x8_80e_kitti-3d-car.py'
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
voxel_size
=
[
0.05
,
0.05
,
0.1
]
model
=
dict
(
type
=
'DynamicVoxelNet'
,
voxel_layer
=
dict
(
_delete_
=
True
,
max_num_points
=-
1
,
point_cloud_range
=
point_cloud_range
,
voxel_size
=
voxel_size
,
max_voxels
=
(
-
1
,
-
1
)),
voxel_encoder
=
dict
(
_delete_
=
True
,
type
=
'DynamicSimpleVFE'
,
voxel_size
=
voxel_size
,
point_cloud_range
=
point_cloud_range
))
configs/mvxnet/dv_mvx-v2_second_secfpn_fpn-fusion_adamw_2x8_80e_kitti-3d-3class.py
View file @
3c5ff9fa
...
...
@@ -158,10 +158,10 @@ train_pipeline = [
multiscale_mode
=
'range'
,
keep_ratio
=
True
),
dict
(
type
=
'GlobalRotScale'
,
rot_
uniform_nois
e
=
[
-
0.78539816
,
0.78539816
],
scal
ing_uniform_nois
e
=
[
0.95
,
1.05
],
trans
_normal_noise
=
[
0.2
,
0.2
,
0.2
]),
type
=
'GlobalRotScale
Trans
'
,
rot_
rang
e
=
[
-
0.78539816
,
0.78539816
],
scal
e_ratio_rang
e
=
[
0.95
,
1.05
],
trans
lation_std
=
[
0.2
,
0.2
,
0.2
]),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0.5
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
...
...
@@ -176,24 +176,28 @@ train_pipeline = [
test_pipeline
=
[
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'
Resize
'
,
img_scale
=
[
(
1280
,
384
)
,
]
,
multiscale_mode
=
'value'
,
keep_ratio
=
True
),
type
=
'
MultiScaleFlipAug3D
'
,
img_scale
=
(
1280
,
384
),
pts_scale_ratio
=
1
,
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
multiscale_mode
=
'value'
,
keep_ratio
=
True
),
dict
(
type
=
'GlobalRotScale'
,
rot_uniform_noise
=
[
0
,
0
],
scaling_uniform_noise
=
[
1
,
1
]),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0
),
type
=
'GlobalRotScaleTrans'
,
rot_range
=
[
0
,
0
],
scale_ratio_range
=
[
1.
,
1.
],
translation_std
=
[
0
,
0
,
0
]),
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'img'
])
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
]
data
=
dict
(
...
...
configs/mvxnet/dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py
deleted
100644 → 0
View file @
f6e95edd
# model settings
voxel_size
=
[
0.16
,
0.16
,
4
]
point_cloud_range
=
[
0
,
-
39.68
,
-
3
,
69.12
,
39.68
,
1
]
model
=
dict
(
type
=
'DynamicVoxelNet'
,
voxel_layer
=
dict
(
max_num_points
=-
1
,
point_cloud_range
=
point_cloud_range
,
voxel_size
=
voxel_size
,
max_voxels
=
(
-
1
,
-
1
)),
voxel_encoder
=
dict
(
type
=
'DynamicPillarFeatureNet'
,
in_channels
=
4
,
feat_channels
=
[
64
],
with_distance
=
False
,
voxel_size
=
voxel_size
,
point_cloud_range
=
point_cloud_range
),
middle_encoder
=
dict
(
type
=
'PointPillarsScatter'
,
in_channels
=
64
,
output_shape
=
[
496
,
432
]),
backbone
=
dict
(
type
=
'SECOND'
,
in_channels
=
64
,
layer_nums
=
[
3
,
5
,
5
],
layer_strides
=
[
2
,
2
,
2
],
out_channels
=
[
64
,
128
,
256
]),
neck
=
dict
(
type
=
'SECONDFPN'
,
in_channels
=
[
64
,
128
,
256
],
upsample_strides
=
[
1
,
2
,
4
],
out_channels
=
[
128
,
128
,
128
]),
bbox_head
=
dict
(
type
=
'Anchor3DHead'
,
num_classes
=
1
,
in_channels
=
384
,
feat_channels
=
384
,
use_direction_classifier
=
True
,
anchor_generator
=
dict
(
type
=
'Anchor3DRangeGenerator'
,
ranges
=
[[
0
,
-
39.68
,
-
1.78
,
69.12
,
39.68
,
-
1.78
]],
sizes
=
[[
1.6
,
3.9
,
1.56
]],
rotations
=
[
0
,
1.57
],
reshape_out
=
True
),
diff_rad_by_sin
=
True
,
bbox_coder
=
dict
(
type
=
'DeltaXYZWLHRBBoxCoder'
),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
2.0
),
loss_dir
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.2
)))
# model training and testing settings
train_cfg
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
iou_calculator
=
dict
(
type
=
'BboxOverlapsNearest3D'
),
pos_iou_thr
=
0.6
,
neg_iou_thr
=
0.45
,
min_pos_iou
=
0.45
,
ignore_iof_thr
=-
1
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
)
test_cfg
=
dict
(
use_rotate_nms
=
True
,
nms_across_levels
=
False
,
nms_thr
=
0.01
,
score_thr
=
0.1
,
min_bbox_size
=
0
,
nms_pre
=
100
,
max_num
=
50
)
# dataset settings
dataset_type
=
'KittiDataset'
data_root
=
'data/kitti/'
class_names
=
[
'Car'
]
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
db_sampler
=
dict
(
root_path
=
data_root
,
info_path
=
data_root
+
'kitti_dbinfos_train.pkl'
,
rate
=
1.0
,
object_rot_range
=
[
0.0
,
0.0
],
prepare
=
dict
(
filter_by_difficulty
=
[
-
1
],
filter_by_min_points
=
dict
(
Car
=
5
),
),
classes
=
class_names
,
sample_groups
=
dict
(
Car
=
15
))
train_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
),
dict
(
type
=
'LoadAnnotations3D'
,
with_bbox_3d
=
True
,
with_label_3d
=
True
),
dict
(
type
=
'ObjectSample'
,
db_sampler
=
db_sampler
),
dict
(
type
=
'ObjectNoise'
,
num_try
=
100
,
loc_noise_std
=
[
0.25
,
0.25
,
0.25
],
global_rot_range
=
[
0.0
,
0.0
],
rot_uniform_noise
=
[
-
0.15707963267
,
0.15707963267
]),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0.5
),
dict
(
type
=
'GlobalRotScale'
,
rot_uniform_noise
=
[
-
0.78539816
,
0.78539816
],
scaling_uniform_noise
=
[
0.95
,
1.05
]),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
]
data
=
dict
(
samples_per_gpu
=
6
,
workers_per_gpu
=
4
,
train
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_train.pkl'
,
split
=
'training'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
train_pipeline
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
False
),
val
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
split
=
'training'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
True
),
test
=
dict
(
type
=
dataset_type
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
split
=
'training'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
True
))
# optimizer
lr
=
0.001
# max learning rate
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
lr
,
betas
=
(
0.95
,
0.99
),
weight_decay
=
0.01
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'cyclic'
,
target_ratio
=
(
10
,
1e-4
),
cyclic_times
=
1
,
step_ratio_up
=
0.4
)
momentum_config
=
dict
(
policy
=
'cyclic'
,
target_ratio
=
(
0.85
/
0.95
,
1
),
cyclic_times
=
1
,
step_ratio_up
=
0.4
)
checkpoint_config
=
dict
(
interval
=
1
)
evaluation
=
dict
(
interval
=
2
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
dict
(
type
=
'TensorboardLoggerHook'
)
])
# yapf:enable
# runtime settings
total_epochs
=
160
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/pp_secfpn_80e'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py
View file @
3c5ff9fa
...
...
@@ -216,14 +216,14 @@ train_pipeline = [
dict
(
type
=
'ObjectNoise'
,
num_try
=
100
,
loc_noise
_std
=
[
1.0
,
1.0
,
0.5
],
translation
_std
=
[
1.0
,
1.0
,
0.5
],
global_rot_range
=
[
0.0
,
0.0
],
rot_
uniform_nois
e
=
[
-
0.78539816
,
0.78539816
]),
rot_
rang
e
=
[
-
0.78539816
,
0.78539816
]),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio
=
0.5
),
dict
(
type
=
'GlobalRotScale'
,
rot_
uniform_nois
e
=
[
-
0.78539816
,
0.78539816
],
scal
ing_uniform_nois
e
=
[
0.95
,
1.05
]),
type
=
'GlobalRotScale
Trans
'
,
rot_
rang
e
=
[
-
0.78539816
,
0.78539816
],
scal
e_ratio_rang
e
=
[
0.95
,
1.05
]),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectNameFilter'
,
classes
=
class_names
),
...
...
@@ -233,12 +233,26 @@ train_pipeline = [
]
test_pipeline
=
[
dict
(
type
=
'LoadPointsFromFile'
,
load_dim
=
4
,
use_dim
=
4
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'MultiScaleFlipAug3D'
,
img_scale
=
(
1333
,
800
),
pts_scale_ratio
=
1
,
flip
=
False
,
transforms
=
[
dict
(
type
=
'GlobalRotScaleTrans'
,
rot_range
=
[
0
,
0
],
scale_ratio_range
=
[
1.
,
1.
],
translation_std
=
[
0
,
0
,
0
]),
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
]
data
=
dict
(
...
...
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment