Commit 3337fa69 authored by zhangwenwei's avatar zhangwenwei
Browse files

Refactor SECOND FPN

parent 868c5fab
from functools import partial
import copy
import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer, constant_init, kaiming_init
from torch.nn import Sequential
from torch.nn.modules.batchnorm import _BatchNorm
from mmcv.cnn import (build_norm_layer, build_upsample_layer, constant_init,
is_norm, kaiming_init)
from mmdet.models import NECKS
from .. import builder
......@@ -12,33 +11,41 @@ from .. import builder
@NECKS.register_module()
class SECONDFPN(nn.Module):
"""Compare with RPN, RPNV2 support arbitrary number of stage.
"""FPN used in SECOND/PointPillars
Args:
in_channels (list[int]): Input channels of multi-scale feature maps
out_channels (list[int]): Output channels of feature maps
upsample_strides (list[int]): Strides used to upsample the feature maps
norm_cfg (dict): Config dict of normalization layers
upsample_cfg (dict): Config dict of upsample layers
"""
def __init__(self,
use_norm=True,
in_channels=[128, 128, 256],
out_channels=[256, 256, 256],
upsample_strides=[1, 2, 4],
num_upsample_filters=[256, 256, 256],
norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01)):
norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01),
upsample_cfg=dict(type='deconv', bias=False)):
# if for GroupNorm,
# cfg is dict(type='GN', num_groups=num_groups, eps=1e-3, affine=True)
super(SECONDFPN, self).__init__()
assert len(num_upsample_filters) == len(upsample_strides)
assert len(out_channels) == len(upsample_strides) == len(in_channels)
self.in_channels = in_channels
ConvTranspose2d = partial(nn.ConvTranspose2d, bias=False)
self.out_channels = out_channels
deblocks = []
for i, num_upsample_filter in enumerate(num_upsample_filters):
norm_layer = build_norm_layer(norm_cfg, num_upsample_filter)[1]
deblock = Sequential(
ConvTranspose2d(
in_channels[i],
num_upsample_filter,
upsample_strides[i],
stride=upsample_strides[i]),
for i, out_channel in enumerate(out_channels):
norm_layer = build_norm_layer(norm_cfg, out_channel)[1]
upsample_cfg_ = copy.deepcopy(upsample_cfg)
upsample_cfg_.update(
in_channels=in_channels[i],
out_channels=out_channel,
padding=upsample_strides[i],
stride=upsample_strides[i])
upsample_layer = build_upsample_layer(upsample_cfg_)
deblock = nn.Sequential(
upsample_layer,
norm_layer,
nn.ReLU(inplace=True),
)
......@@ -49,7 +56,7 @@ class SECONDFPN(nn.Module):
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
elif is_norm(m):
constant_init(m, 1)
def forward(self, x):
......@@ -65,30 +72,34 @@ class SECONDFPN(nn.Module):
@NECKS.register_module()
class SECONDFusionFPN(SECONDFPN):
"""Compare with RPN, RPNV2 support arbitrary number of stage.
"""FPN used in multi-modality SECOND/PointPillars
Args:
in_channels (list[int]): Input channels of multi-scale feature maps
out_channels (list[int]): Output channels of feature maps
upsample_strides (list[int]): Strides used to upsample the feature maps
norm_cfg (dict): Config dict of normalization layers
upsample_cfg (dict): Config dict of upsample layers
downsample_rates (list[int]): The downsample rate of feature map in
comparison to the original voxelization input
fusion_layer (dict): Config dict of fusion layers
"""
def __init__(self,
use_norm=True,
in_channels=[128, 128, 256],
out_channels=[256, 256, 256],
upsample_strides=[1, 2, 4],
num_upsample_filters=[256, 256, 256],
norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01),
down_sample_rate=[40, 8, 8],
fusion_layer=None,
cat_points=False):
super(SECONDFusionFPN, self).__init__(
use_norm,
in_channels,
upsample_strides,
num_upsample_filters,
norm_cfg,
)
upsample_cfg=dict(type='deconv', bias=False),
downsample_rates=[40, 8, 8],
fusion_layer=None):
super(SECONDFusionFPN,
self).__init__(in_channels, out_channels, upsample_strides,
norm_cfg, upsample_cfg)
self.fusion_layer = None
if fusion_layer is not None:
self.fusion_layer = builder.build_fusion_layer(fusion_layer)
self.cat_points = cat_points
self.down_sample_rate = down_sample_rate
self.downsample_rates = downsample_rates
def forward(self,
x,
......@@ -107,11 +118,11 @@ class SECONDFusionFPN(SECONDFPN):
downsample_pts_coors = torch.zeros_like(coors)
downsample_pts_coors[:, 0] = coors[:, 0]
downsample_pts_coors[:, 1] = (
coors[:, 1] / self.down_sample_rate[0])
coors[:, 1] / self.downsample_rates[0])
downsample_pts_coors[:, 2] = (
coors[:, 2] / self.down_sample_rate[1])
coors[:, 2] / self.downsample_rates[1])
downsample_pts_coors[:, 3] = (
coors[:, 3] / self.down_sample_rate[2])
coors[:, 3] / self.downsample_rates[2])
# fusion for each point
out = self.fusion_layer(img_feats, points, out,
downsample_pts_coors, img_meta)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment