Note: We are going through large refactoring to provide simpler and more unified usage of many modules.
Note: We are going through large refactoring to provide simpler and more unified usage of many modules.
The compatibilities of models are broken due to the unification and simplification of coordinate systems. For now, most models are benchmarked with similar performance, though few models are still being benchmarked.
The compatibilities of models are broken due to the unification and simplification of coordinate systems. For now, most models are benchmarked with similar performance, though few models are still being benchmarked. In this version, we update some of the model checkpoints after the refactor of coordinate systems. See more details in the [Changelog](docs/en/changelog.md).
In the [nuScenes 3D detection challenge](https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any) of the 5th AI Driving Olympics in NeurIPS 2020, we obtained the best PKL award and the second runner-up by multi-modality entry, and the best vision-only results.
In the [nuScenes 3D detection challenge](https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any) of the 5th AI Driving Olympics in NeurIPS 2020, we obtained the best PKL award and the second runner-up by multi-modality entry, and the best vision-only results.
...
@@ -83,7 +83,7 @@ This project is released under the [Apache 2.0 license](LICENSE).
...
@@ -83,7 +83,7 @@ This project is released under the [Apache 2.0 license](LICENSE).
## Changelog
## Changelog
v1.0.0rc0 was released in 18/2/2022.
v1.0.0rc1 was released in 1/4/2022.
Please refer to [changelog.md](docs/en/changelog.md) for details and release history.
Please refer to [changelog.md](docs/en/changelog.md) for details and release history.
## Benchmark and model zoo
## Benchmark and model zoo
...
@@ -266,20 +266,21 @@ We wish that the toolbox and benchmark could serve the growing research communit
...
@@ -266,20 +266,21 @@ We wish that the toolbox and benchmark could serve the growing research communit
## Projects in OpenMMLab
## Projects in OpenMMLab
-[MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
-[MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
| [PointNet2SAMSG](./3dssd_4x4_kitti-3d-car.py)| Car |72e|4.7||78.69(81.27)<sup>1</sup>|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/3dssd/3dssd_kitti-3d-car_20210602_124438-b4276f56.pth)|[log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/3dssd/3dssd_kitti-3d-car_20210602_124438.log.json)|
| [PointNet2SAMSG](./3dssd_4x4_kitti-3d-car.py)| Car |72e|4.7||78.58(81.27)<sup>1</sup>|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/3dssd/3dssd_4x4_kitti-3d-car/3dssd_4x4_kitti-3d-car_20210818_203828-b89c8fc4.pth)|[log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/3dssd/3dssd_4x4_kitti-3d-car/3dssd_4x4_kitti-3d-car_20210818_203828.log.json)|
[1]:We report two different 3D object detection performance here. 78.69mAP is evaluated by our evaluation code and 81.27mAP is evaluated by the official development kit (so as that used in the paper and official code of 3DSSD ). We found that the commonly used Python implementation of [`rotate_iou`](https://github.com/traveller59/second.pytorch/blob/e42e4a0e17262ab7d180ee96a0a36427f2c20a44/second/core/non_max_suppression/nms_gpu.py#L605) which is used in our KITTI dataset evaluation, is different from the official implementation in [KITTI benchmark](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d).
[1]:We report two different 3D object detection performance here. 78.58mAP is evaluated by our evaluation code and 81.27mAP is evaluated by the official development kit (so as that used in the paper and official code of 3DSSD ). We found that the commonly used Python implementation of [`rotate_iou`](https://github.com/traveller59/second.pytorch/blob/e42e4a0e17262ab7d180ee96a0a36427f2c20a44/second/core/non_max_suppression/nms_gpu.py#L605) which is used in our KITTI dataset evaluation, is different from the official implementation in [KITTI benchmark](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d).
**Note**: Models noted by `*` means it is trained using stronger augmentation with vertical flip under bird-eye-view, global translation, and larger range of global rotation.
**Note**: Models noted by `*` means it is trained using stronger augmentation with vertical flip under bird-eye-view, global translation, and larger range of global rotation.
**Notice**: If your current mmdetection3d version >= 0.6.0, and you are using the checkpoints downloaded from the above links or using checkpoints trained with mmdetection3d version < 0.6.0, the checkpoints have to be first converted via [tools/model_converters/convert_h3dnet_checkpoints.py](../../tools/model_converters/convert_h3dnet_checkpoints.py):
**Notice**: If your current mmdetection3d version >= 0.6.0, and you are using the checkpoints downloaded from the above links or using checkpoints trained with mmdetection3d version < 0.6.0, the checkpoints have to be first converted via [tools/model_converters/convert_h3dnet_checkpoints.py](../../tools/model_converters/convert_h3dnet_checkpoints.py):