Commit 2bf79830 authored by zhangwenwei's avatar zhangwenwei
Browse files

Merge branch 'indoor_dataset_fix_bug' into 'master'

Indoor dataset fix bug

See merge request open-mmlab/mmdet.3d!42
parents 546fe9d5 ed4135c3
......@@ -43,7 +43,7 @@ class Custom3DDataset(Dataset):
input_dict = dict(pts_filename=pts_filename)
if not self.test_mode:
annos = self.get_ann_info(index, sample_idx)
annos = self.get_ann_info(index)
input_dict['ann_info'] = annos
if len(annos['gt_bboxes_3d']) == 0:
return None
......
......@@ -26,17 +26,16 @@ class ScanNetDataset(Custom3DDataset):
pts_filename = osp.join(self.data_root, f'{sample_idx}_vert.npy')
return pts_filename
def get_ann_info(self, index, sample_idx):
def get_ann_info(self, index):
# Use index to get the annos, thus the evalhook could also use this api
info = self.data_infos[index]
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'] # k, 6
gt_labels_3d = info['annos']['class']
gt_bboxes_3d_mask = np.ones_like(gt_labels_3d, dtype=np.bool)
else:
gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32)
gt_labels_3d = np.zeros(1, dtype=np.bool)
gt_bboxes_3d_mask = np.zeros(1, dtype=np.bool)
gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
gt_labels_3d = np.zeros(0, )
sample_idx = info['point_cloud']['lidar_idx']
pts_instance_mask_path = osp.join(self.data_root,
f'{sample_idx}_ins_label.npy')
pts_semantic_mask_path = osp.join(self.data_root,
......@@ -45,7 +44,6 @@ class ScanNetDataset(Custom3DDataset):
anns_results = dict(
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d,
gt_bboxes_3d_mask=gt_bboxes_3d_mask,
pts_instance_mask_path=pts_instance_mask_path,
pts_semantic_mask_path=pts_semantic_mask_path)
return anns_results
......@@ -25,20 +25,16 @@ class SUNRGBDDataset(Custom3DDataset):
f'{sample_idx:06d}.npy')
return pts_filename
def get_ann_info(self, index, sample_idx):
def get_ann_info(self, index):
# Use index to get the annos, thus the evalhook could also use this api
info = self.data_infos[index]
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'] # k, 6
gt_labels_3d = info['annos']['class']
gt_bboxes_3d_mask = np.ones_like(gt_labels_3d, dtype=np.bool)
else:
gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32)
gt_labels_3d = np.zeros(1, dtype=np.bool)
gt_bboxes_3d_mask = np.zeros(1, dtype=np.bool)
gt_bboxes_3d = np.zeros((0, 7), dtype=np.float32)
gt_labels_3d = np.zeros(0, )
anns_results = dict(
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d,
gt_bboxes_3d_mask=gt_bboxes_3d_mask)
gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels_3d)
return anns_results
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment