Unverified Commit 136dd481 authored by Wenwei Zhang's avatar Wenwei Zhang Committed by GitHub
Browse files

[Fix]: fix documentation related to nuim (#94)

* [Feature]: support using nuimages for instance segmentation

* Update performance and start benchmark

* Change default path names

* Update performance

* Update mmcv version

* Update model links

* Update model links and fix unit tests

* rephrase

* Fix readme

* Update model zoo

* Fix typo
parent 0885ab46
# PointPillars: Fast Encoders for Object Detection from Point Clouds # NuImages Results
## Introduction ## Introduction
We support and provide some baseline results on [nuImages dataset](https://www.nuscenes.org/nuimages). We support and provide some baseline results on [nuImages dataset](https://www.nuscenes.org/nuimages).
We follow the class mapping in nuScenes dataset, which maps the original categories into 10 foreground categories. We follow the class mapping in nuScenes dataset, which maps the original categories into 10 foreground categories.
The baseline results includes instance segmentation models, e.g., Mask R-CNN and Cascade Mask R-CNN. The baseline results include instance segmentation models, e.g., Mask R-CNN and Cascade Mask R-CNN.
We will support panoptic segmentation models in the future. We will support panoptic segmentation models in the future.
...@@ -14,8 +14,8 @@ We will support panoptic segmentation models in the future. ...@@ -14,8 +14,8 @@ We will support panoptic segmentation models in the future.
We report Mask R-CNN and Cascade Mask R-CNN results on nuimages. We report Mask R-CNN and Cascade Mask R-CNN results on nuimages.
|Method | |Backbone| Lr schd | Mem (GB) | Box AP | Mask AP |Download | |Method | Backbone|Pretraining | Lr schd | Mem (GB) | Box AP | Mask AP |Download |
| :---------: |:---------: | :---------: | :-----: |:-----: | :------: | :------------: | :----: | :------: | | :---------: |:---------: | :---------: | :-----: |:-----: | :------: | :------------: | :----: |
| Mask R-CNN| [R-50](./mask_rcnn_r50_fpn_1x_nuim.py) |IN|1x|7.4|47.8 |38.4|[model](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection3d/v0.1.0_models/nuimages/mask_rcnn_r50_fpn_1x_nuim/mask_rcnn_r50_fpn_1x_nuim_20200906_114546-902bb808.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection3d/v0.1.0_models/nuimages/mask_rcnn_r50_fpn_1x_nuim/mask_rcnn_r50_fpn_1x_nuim_20200906_114546.log.json)| | Mask R-CNN| [R-50](./mask_rcnn_r50_fpn_1x_nuim.py) |IN|1x|7.4|47.8 |38.4|[model](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection3d/v0.1.0_models/nuimages/mask_rcnn_r50_fpn_1x_nuim/mask_rcnn_r50_fpn_1x_nuim_20200906_114546-902bb808.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection3d/v0.1.0_models/nuimages/mask_rcnn_r50_fpn_1x_nuim/mask_rcnn_r50_fpn_1x_nuim_20200906_114546.log.json)|
| Mask R-CNN| [R-50](./mask_rcnn_r50_fpn_coco-2x_1x_nuim.py) |IN+COCO-2x|1x|7.4|49.6|40.0|[model](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection3d/v0.1.0_models/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20200905_234546-01b6b9ba.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection3d/v0.1.0_models/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20200905_234546.log.json)| | Mask R-CNN| [R-50](./mask_rcnn_r50_fpn_coco-2x_1x_nuim.py) |IN+COCO-2x|1x|7.4|49.6|40.0|[model](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection3d/v0.1.0_models/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20200905_234546-01b6b9ba.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection3d/v0.1.0_models/nuimages/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20200905_234546.log.json)|
| Mask R-CNN| [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_1x_nuim.py) |IN|1x|7.0|47.7|38.2|[model](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection3d/v0.1.0_models/nuimages/mask_rcnn_r50_caffe_fpn_1x_nuim/mask_rcnn_r50_caffe_fpn_1x_nuim_20200906_120052-733905fa.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection3d/v0.1.0_models/nuimages/mask_rcnn_r50_caffe_fpn_1x_nuim/mask_rcnn_r50_caffe_fpn_1x_nuim_20200906_120052.log.json)| | Mask R-CNN| [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_1x_nuim.py) |IN|1x|7.0|47.7|38.2|[model](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection3d/v0.1.0_models/nuimages/mask_rcnn_r50_caffe_fpn_1x_nuim/mask_rcnn_r50_caffe_fpn_1x_nuim_20200906_120052-733905fa.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection3d/v0.1.0_models/nuimages/mask_rcnn_r50_caffe_fpn_1x_nuim/mask_rcnn_r50_caffe_fpn_1x_nuim_20200906_120052.log.json)|
...@@ -28,5 +28,5 @@ We report Mask R-CNN and Cascade Mask R-CNN results on nuimages. ...@@ -28,5 +28,5 @@ We report Mask R-CNN and Cascade Mask R-CNN results on nuimages.
**Note**: **Note**:
1. `IN` means only using ImageNet pre-trained backbone. `IN+COCO-Nx` means the backbone is first pre-trained on ImageNet, and then the detector is pre-trained on COCO train2017 dataset by `Nx` schedules. 1. `IN` means only using ImageNet pre-trained backbone. `IN+COCO-Nx` means the backbone is first pre-trained on ImageNet, and then the detector is pre-trained on COCO train2017 dataset by `Nx` schedules.
2. All the training hyper-parameters follows the standard 1x schedules on COCO dataset except that the images are resized from 2. All the training hyper-parameters follow the standard 1x schedules on COCO dataset except that the images are resized from
1280 x 720 to 1920 x 1080 (relative ratio 0.8 to 1.2) since the images are in size 1600 x 900. 1280 x 720 to 1920 x 1080 (relative ratio 0.8 to 1.2) since the images are in size 1600 x 900.
...@@ -35,3 +35,6 @@ Please refer to [MVXNet](https://github.com/open-mmlab/mmdetection3d/blob/master ...@@ -35,3 +35,6 @@ Please refer to [MVXNet](https://github.com/open-mmlab/mmdetection3d/blob/master
### RegNetX ### RegNetX
Please refer to [RegNet](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/regnet) for details. Please refer to [RegNet](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/regnet) for details.
### nuImages
We also support baseline models on [nuImages dataset](https://www.nuscenes.org/nuimages). Please refer to [nuImages](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/nuimages) for details.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment