Commit 0c05036f authored by yinchimaoliang's avatar yinchimaoliang
Browse files

complete readme

parent d622b76a
...@@ -4,4 +4,4 @@ ...@@ -4,4 +4,4 @@
2. Extract point clouds and annotations (semantic seg, instance seg etc.) by running `python batch_load_scannet_data.py`, which will create a folder named `scannet_train_instance_data` here. 2. Extract point clouds and annotations (semantic seg, instance seg etc.) by running `python batch_load_scannet_data.py`, which will create a folder named `scannet_train_instance_data` here.
3. Enter the project root directory, generate training data by running `python tools\create_data.py scannet --root-path ./data/scannet --out-dir ./data/scannet --extra-tag scannet` 3. Enter the project root directory, generate training data by running `python tools/create_data.py scannet --root-path ./data/scannet --out-dir ./data/scannet --extra-tag scannet`.
...@@ -6,6 +6,6 @@ ...@@ -6,6 +6,6 @@
3. Prepare data by running `python sunrgbd_data.py --gen_v1_data` 3. Prepare data by running `python sunrgbd_data.py --gen_v1_data`
You can also examine and visualize the data with `python sunrgbd_data.py --viz` and use MeshLab to view the generated PLY files at `data_viz_dump`. 4. Enter the project root directory, generate training data by running `python tools/create_data.py sunrgbd --root-path ./data/sunrgbd --out-dir ./data/sunrgbd --extra-tag sunrgbd`.
NOTE: SUNRGBDtoolbox.zip should have MD5 hash `18d22e1761d36352f37232cba102f91f` (you can check the hash with `md5 SUNRGBDtoolbox.zip` on Mac OS or `md5sum SUNRGBDtoolbox.zip` on Linux) NOTE: SUNRGBDtoolbox.zip should have MD5 hash `18d22e1761d36352f37232cba102f91f` (you can check the hash with `md5 SUNRGBDtoolbox.zip` on Mac OS or `md5sum SUNRGBDtoolbox.zip` on Linux)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment