Unverified Commit 0287048a authored by ChaimZhu's avatar ChaimZhu Committed by GitHub
Browse files

[Enhance] Update Registry in MMDet3D (#1412)

* Update Registry in MMDet3D

* fix compose pipeline bug

* update registry

* fix some bugs

* fix comments

* fix comments
parent e013bab5
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet.datasets.builder import build_dataloader
from .builder import DATASETS, build_dataset
from .builder import DATASETS, PIPELINES, build_dataset
from .custom_3d import Custom3DDataset
from .custom_3d_seg import Custom3DSegDataset
from .kitti_dataset import KittiDataset
......@@ -41,5 +41,5 @@ __all__ = [
'LoadPointsFromMultiSweeps', 'WaymoDataset', 'BackgroundPointsFilter',
'VoxelBasedPointSampler', 'get_loading_pipeline', 'RandomDropPointsColor',
'RandomJitterPoints', 'ObjectNameFilter', 'AffineResize',
'RandomShiftScale', 'LoadPointsFromDict'
'RandomShiftScale', 'LoadPointsFromDict', 'PIPELINES'
]
......@@ -3,7 +3,6 @@ import platform
from mmcv.utils import Registry, build_from_cfg
from mmdet.datasets import DATASETS
from mmdet.datasets.builder import _concat_dataset
if platform.system() != 'Windows':
......@@ -16,6 +15,8 @@ if platform.system() != 'Windows':
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))
OBJECTSAMPLERS = Registry('Object sampler')
DATASETS = Registry('dataset')
PIPELINES = Registry('pipeline')
def build_dataset(cfg, default_args=None):
......
......@@ -7,8 +7,8 @@ import mmcv
import numpy as np
from torch.utils.data import Dataset
from mmdet.datasets import DATASETS
from ..core.bbox import get_box_type
from .builder import DATASETS
from .pipelines import Compose
from .utils import extract_result_dict, get_loading_pipeline
......
......@@ -7,8 +7,8 @@ import mmcv
import numpy as np
from torch.utils.data import Dataset
from mmdet.datasets import DATASETS
from mmseg.datasets import DATASETS as SEG_DATASETS
from .builder import DATASETS
from .pipelines import Compose
from .utils import extract_result_dict, get_loading_pipeline
......
......@@ -2,7 +2,8 @@
import mmcv
import numpy as np
from mmdet.datasets import DATASETS, CustomDataset
from mmdet.datasets import CustomDataset
from .builder import DATASETS
@DATASETS.register_module()
......
......@@ -9,10 +9,10 @@ import numpy as np
import torch
from mmcv.utils import print_log
from mmdet.datasets import DATASETS
from ..core import show_multi_modality_result, show_result
from ..core.bbox import (Box3DMode, CameraInstance3DBoxes, Coord3DMode,
LiDARInstance3DBoxes, points_cam2img)
from .builder import DATASETS
from .custom_3d import Custom3DDataset
from .pipelines import Compose
......
......@@ -8,8 +8,8 @@ import numpy as np
import torch
from mmcv.utils import print_log
from mmdet.datasets import DATASETS
from ..core.bbox import Box3DMode, CameraInstance3DBoxes, points_cam2img
from .builder import DATASETS
from .nuscenes_mono_dataset import NuScenesMonoDataset
......@@ -35,6 +35,8 @@ class KittiMonoDataset(NuScenesMonoDataset):
def __init__(self,
data_root,
info_file,
ann_file,
pipeline,
load_interval=1,
with_velocity=False,
eval_version=None,
......@@ -42,6 +44,8 @@ class KittiMonoDataset(NuScenesMonoDataset):
**kwargs):
super().__init__(
data_root=data_root,
ann_file=ann_file,
pipeline=pipeline,
load_interval=load_interval,
with_velocity=with_velocity,
eval_version=eval_version,
......
......@@ -11,9 +11,9 @@ from lyft_dataset_sdk.utils.data_classes import Box as LyftBox
from pyquaternion import Quaternion
from mmdet3d.core.evaluation.lyft_eval import lyft_eval
from mmdet.datasets import DATASETS
from ..core import show_result
from ..core.bbox import Box3DMode, Coord3DMode, LiDARInstance3DBoxes
from .builder import DATASETS
from .custom_3d import Custom3DDataset
from .pipelines import Compose
......
......@@ -7,9 +7,9 @@ import numpy as np
import pyquaternion
from nuscenes.utils.data_classes import Box as NuScenesBox
from mmdet.datasets import DATASETS
from ..core import show_result
from ..core.bbox import Box3DMode, Coord3DMode, LiDARInstance3DBoxes
from .builder import DATASETS
from .custom_3d import Custom3DDataset
from .pipelines import Compose
......@@ -125,8 +125,7 @@ class NuScenesDataset(Custom3DDataset):
filter_empty_gt=True,
test_mode=False,
eval_version='detection_cvpr_2019',
use_valid_flag=False,
**kwargs):
use_valid_flag=False):
self.load_interval = load_interval
self.use_valid_flag = use_valid_flag
super().__init__(
......@@ -137,8 +136,7 @@ class NuScenesDataset(Custom3DDataset):
modality=modality,
box_type_3d=box_type_3d,
filter_empty_gt=filter_empty_gt,
test_mode=test_mode,
**kwargs)
test_mode=test_mode)
self.with_velocity = with_velocity
self.eval_version = eval_version
......@@ -186,7 +184,6 @@ class NuScenesDataset(Custom3DDataset):
Returns:
list[dict]: List of annotations sorted by timestamps.
"""
# loading data from a file-like object needs file format
data = mmcv.load(ann_file, file_format='pkl')
data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp']))
data_infos = data_infos[::self.load_interval]
......
......@@ -11,9 +11,10 @@ import torch
from nuscenes.utils.data_classes import Box as NuScenesBox
from mmdet3d.core import bbox3d2result, box3d_multiclass_nms, xywhr2xyxyr
from mmdet.datasets import DATASETS, CocoDataset
from mmdet.datasets import CocoDataset
from ..core import show_multi_modality_result
from ..core.bbox import CameraInstance3DBoxes, get_box_type
from .builder import DATASETS
from .pipelines import Compose
from .utils import extract_result_dict, get_loading_pipeline
......@@ -76,6 +77,8 @@ class NuScenesMonoDataset(CocoDataset):
def __init__(self,
data_root,
ann_file,
pipeline,
load_interval=1,
with_velocity=True,
modality=None,
......@@ -83,9 +86,46 @@ class NuScenesMonoDataset(CocoDataset):
eval_version='detection_cvpr_2019',
use_valid_flag=False,
version='v1.0-trainval',
**kwargs):
super().__init__(**kwargs)
classes=None,
img_prefix='',
seg_prefix=None,
proposal_file=None,
test_mode=False,
filter_empty_gt=True,
file_client_args=dict(backend='disk')):
self.ann_file = ann_file
self.data_root = data_root
self.img_prefix = img_prefix
self.seg_prefix = seg_prefix
self.proposal_file = proposal_file
self.test_mode = test_mode
self.filter_empty_gt = filter_empty_gt
self.CLASSES = self.get_classes(classes)
self.file_client = mmcv.FileClient(**file_client_args)
# load annotations (and proposals)
with self.file_client.get_local_path(self.ann_file) as local_path:
self.data_infos = self.load_annotations(local_path)
if self.proposal_file is not None:
with self.file_client.get_local_path(
self.proposal_file) as local_path:
self.proposals = self.load_proposals(local_path)
else:
self.proposals = None
# filter images too small and containing no annotations
if not test_mode:
valid_inds = self._filter_imgs()
self.data_infos = [self.data_infos[i] for i in valid_inds]
if self.proposals is not None:
self.proposals = [self.proposals[i] for i in valid_inds]
# set group flag for the sampler
self._set_group_flag()
# processing pipeline
self.pipeline = Compose(pipeline)
self.load_interval = load_interval
self.with_velocity = with_velocity
self.modality = modality
......
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet.datasets.pipelines import Compose
from .compose import Compose
from .dbsampler import DataBaseSampler
from .formating import Collect3D, DefaultFormatBundle, DefaultFormatBundle3D
from .loading import (LoadAnnotations3D, LoadImageFromFileMono3D,
......
# Copyright (c) OpenMMLab. All rights reserved.
import collections
from mmcv.utils import build_from_cfg
from mmdet.datasets.builder import PIPELINES as MMDET_PIPELINES
from ..builder import PIPELINES
@PIPELINES.register_module()
class Compose:
"""Compose multiple transforms sequentially. The pipeline registry of
mmdet3d separates with mmdet, however, sometimes we may need to use mmdet's
pipeline. So the class is rewritten to be able to use pipelines from both
mmdet3d and mmdet.
Args:
transforms (Sequence[dict | callable]): Sequence of transform object or
config dict to be composed.
"""
def __init__(self, transforms):
assert isinstance(transforms, collections.abc.Sequence)
self.transforms = []
for transform in transforms:
if isinstance(transform, dict):
if transform['type'] in PIPELINES._module_dict.keys():
transform = build_from_cfg(transform, PIPELINES)
else:
transform = build_from_cfg(transform, MMDET_PIPELINES)
self.transforms.append(transform)
elif callable(transform):
self.transforms.append(transform)
else:
raise TypeError('transform must be callable or a dict')
def __call__(self, data):
"""Call function to apply transforms sequentially.
Args:
data (dict): A result dict contains the data to transform.
Returns:
dict: Transformed data.
"""
for t in self.transforms:
data = t(data)
if data is None:
return None
return data
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += f' {t}'
format_string += '\n)'
return format_string
......@@ -8,8 +8,7 @@ import numpy as np
from mmdet3d.core.bbox import box_np_ops
from mmdet3d.datasets.pipelines import data_augment_utils
from mmdet.datasets import PIPELINES
from ..builder import OBJECTSAMPLERS
from ..builder import OBJECTSAMPLERS, PIPELINES
class BatchSampler:
......
......@@ -4,10 +4,8 @@ from mmcv.parallel import DataContainer as DC
from mmdet3d.core.bbox import BaseInstance3DBoxes
from mmdet3d.core.points import BasePoints
from mmdet.datasets.builder import PIPELINES
from mmdet.datasets.pipelines import to_tensor
PIPELINES._module_dict.pop('DefaultFormatBundle')
from ..builder import PIPELINES
@PIPELINES.register_module()
......
......@@ -3,8 +3,8 @@ import mmcv
import numpy as np
from mmdet3d.core.points import BasePoints, get_points_type
from mmdet.datasets.builder import PIPELINES
from mmdet.datasets.pipelines import LoadAnnotations, LoadImageFromFile
from ..builder import PIPELINES
@PIPELINES.register_module()
......
......@@ -4,8 +4,8 @@ from copy import deepcopy
import mmcv
from mmdet.datasets.builder import PIPELINES
from mmdet.datasets.pipelines import Compose
from ..builder import PIPELINES
from .compose import Compose
@PIPELINES.register_module()
......
......@@ -10,9 +10,8 @@ from mmcv.utils import build_from_cfg
from mmdet3d.core import VoxelGenerator
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
LiDARInstance3DBoxes, box_np_ops)
from mmdet.datasets.builder import PIPELINES
from mmdet.datasets.pipelines import RandomFlip
from ..builder import OBJECTSAMPLERS
from ..builder import OBJECTSAMPLERS, PIPELINES
from .data_augment_utils import noise_per_object_v3_
......
......@@ -5,8 +5,8 @@ import numpy as np
from mmdet3d.core import show_seg_result
from mmdet3d.core.bbox import DepthInstance3DBoxes
from mmdet.datasets import DATASETS
from mmseg.datasets import DATASETS as SEG_DATASETS
from .builder import DATASETS
from .custom_3d import Custom3DDataset
from .custom_3d_seg import Custom3DSegDataset
from .pipelines import Compose
......
......@@ -7,8 +7,8 @@ import numpy as np
from mmdet3d.core import instance_seg_eval, show_result, show_seg_result
from mmdet3d.core.bbox import DepthInstance3DBoxes
from mmdet.datasets import DATASETS
from mmseg.datasets import DATASETS as SEG_DATASETS
from .builder import DATASETS
from .custom_3d import Custom3DDataset
from .custom_3d_seg import Custom3DSegDataset
from .pipelines import Compose
......
# Copyright (c) OpenMMLab. All rights reserved.
from os import path as osp
from mmdet.datasets import DATASETS
from .builder import DATASETS
from .custom_3d import Custom3DDataset
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment