"...git@developer.sourcefind.cn:OpenDAS/ktransformers.git" did not exist on "11544ef2b07bf02c32264296b19d14570f41cbd5"
Commit 0029612d authored by Xiangxu-0103's avatar Xiangxu-0103 Committed by ZwwWayne
Browse files

[Fix] Fix waymo converter (#2040)

* fix waymo converter

* [Fix] Update waymo converter and fix lint

* Update waymo_converter.py

* Update kitti_converter.py

* Update update_infos_to_v2.py

* revert
parent 335d4393
...@@ -296,7 +296,7 @@ def get_kitti_style_2d_boxes(info: dict, ...@@ -296,7 +296,7 @@ def get_kitti_style_2d_boxes(info: dict,
repro_rec['velocity'] = -1 # no velocity in KITTI repro_rec['velocity'] = -1 # no velocity in KITTI
center_3d = np.array(loc).reshape([1, 3]) center_3d = np.array(loc).reshape([1, 3])
center_2d_with_depth = box_np_ops.points_cam2img( center_2d_with_depth = points_cam2img(
center_3d, camera_intrinsic, with_depth=True) center_3d, camera_intrinsic, with_depth=True)
center_2d_with_depth = center_2d_with_depth.squeeze().tolist() center_2d_with_depth = center_2d_with_depth.squeeze().tolist()
......
...@@ -3,6 +3,7 @@ from typing import Dict, Optional, Tuple ...@@ -3,6 +3,7 @@ from typing import Dict, Optional, Tuple
import torch import torch
from mmcv.cnn.bricks import build_norm_layer from mmcv.cnn.bricks import build_norm_layer
from mmdet.models.utils import multi_apply
from mmengine.model import BaseModule from mmengine.model import BaseModule
from mmengine.structures import InstanceData from mmengine.structures import InstanceData
from torch import nn as nn from torch import nn as nn
...@@ -10,7 +11,6 @@ from torch import nn as nn ...@@ -10,7 +11,6 @@ from torch import nn as nn
from mmdet3d.models.builder import build_loss from mmdet3d.models.builder import build_loss
from mmdet3d.registry import MODELS from mmdet3d.registry import MODELS
from mmdet3d.utils import InstanceList from mmdet3d.utils import InstanceList
from mmdet.models.utils import multi_apply
@MODELS.register_module() @MODELS.register_module()
......
...@@ -2,6 +2,8 @@ ...@@ -2,6 +2,8 @@
from typing import List, Optional from typing import List, Optional
import torch import torch
from mmdet.models.task_modules import AssignResult
from mmdet.models.task_modules.samplers import SamplingResult
from torch.nn import functional as F from torch.nn import functional as F
from mmdet3d.models.roi_heads.base_3droi_head import Base3DRoIHead from mmdet3d.models.roi_heads.base_3droi_head import Base3DRoIHead
...@@ -9,8 +11,6 @@ from mmdet3d.registry import MODELS ...@@ -9,8 +11,6 @@ from mmdet3d.registry import MODELS
from mmdet3d.structures import bbox3d2roi from mmdet3d.structures import bbox3d2roi
from mmdet3d.structures.det3d_data_sample import SampleList from mmdet3d.structures.det3d_data_sample import SampleList
from mmdet3d.utils import InstanceList from mmdet3d.utils import InstanceList
from mmdet.models.task_modules import AssignResult
from mmdet.models.task_modules.samplers import SamplingResult
@MODELS.register_module() @MODELS.register_module()
......
...@@ -80,9 +80,6 @@ def get_empty_lidar_points(): ...@@ -80,9 +80,6 @@ def get_empty_lidar_points():
num_pts_feats=None, num_pts_feats=None,
# (str, optional): Path of LiDAR data file. # (str, optional): Path of LiDAR data file.
lidar_path=None, lidar_path=None,
# (list[list[float]]): Transformation matrix from lidar
# or depth to image with shape [4, 4].
lidar2img=None,
# (list[list[float]], optional): Transformation matrix # (list[list[float]], optional): Transformation matrix
# from lidar to ego-vehicle # from lidar to ego-vehicle
# with shape [4, 4]. # with shape [4, 4].
...@@ -120,6 +117,9 @@ def get_empty_img_info(): ...@@ -120,6 +117,9 @@ def get_empty_img_info():
# matrix from camera to image with # matrix from camera to image with
# shape [3, 3], [3, 4] or [4, 4]. # shape [3, 3], [3, 4] or [4, 4].
cam2img=None, cam2img=None,
# (list[list[float]]): Transformation matrix from lidar
# or depth to image with shape [4, 4].
lidar2img=None,
# (list[list[float]], optional) : Transformation # (list[list[float]], optional) : Transformation
# matrix from camera to ego-vehicle # matrix from camera to ego-vehicle
# with shape [4, 4]. # with shape [4, 4].
...@@ -159,7 +159,7 @@ def get_empty_standard_data_info( ...@@ -159,7 +159,7 @@ def get_empty_standard_data_info(
data_info = dict( data_info = dict(
# (str): Sample id of the frame. # (str): Sample id of the frame.
sample_id=None, sample_idx=None,
# (str, optional): '000010' # (str, optional): '000010'
token=None, token=None,
**get_single_image_sweep(camera_types), **get_single_image_sweep(camera_types),
......
...@@ -69,10 +69,7 @@ class Waymo2KITTI(object): ...@@ -69,10 +69,7 @@ class Waymo2KITTI(object):
'_SIDE_LEFT', '_SIDE_LEFT',
'_SIDE_RIGHT', '_SIDE_RIGHT',
] ]
self.lidar_list = [ self.lidar_list = ['TOP', 'FRONT', 'SIDE_LEFT', 'SIDE_RIGHT', 'REAR']
'_FRONT', '_FRONT_RIGHT', '_FRONT_LEFT', '_SIDE_RIGHT',
'_SIDE_LEFT'
]
self.type_list = [ self.type_list = [
'UNKNOWN', 'VEHICLE', 'PEDESTRIAN', 'SIGN', 'CYCLIST' 'UNKNOWN', 'VEHICLE', 'PEDESTRIAN', 'SIGN', 'CYCLIST'
] ]
...@@ -135,7 +132,8 @@ class Waymo2KITTI(object): ...@@ -135,7 +132,8 @@ class Waymo2KITTI(object):
self.save_image(frame, file_idx, frame_idx) self.save_image(frame, file_idx, frame_idx)
self.save_calib(frame, file_idx, frame_idx) self.save_calib(frame, file_idx, frame_idx)
self.save_lidar(frame, file_idx, frame_idx) if 'testing_3d_camera_only_detection' not in self.load_dir:
self.save_lidar(frame, file_idx, frame_idx)
self.save_pose(frame, file_idx, frame_idx) self.save_pose(frame, file_idx, frame_idx)
self.save_timestamp(frame, file_idx, frame_idx) self.save_timestamp(frame, file_idx, frame_idx)
...@@ -441,7 +439,6 @@ class Waymo2KITTI(object): ...@@ -441,7 +439,6 @@ class Waymo2KITTI(object):
dir_list1 = [ dir_list1 = [
self.label_all_save_dir, self.label_all_save_dir,
self.calib_save_dir, self.calib_save_dir,
self.point_cloud_save_dir,
self.pose_save_dir, self.pose_save_dir,
self.timestamp_save_dir, self.timestamp_save_dir,
] ]
...@@ -451,10 +448,12 @@ class Waymo2KITTI(object): ...@@ -451,10 +448,12 @@ class Waymo2KITTI(object):
dir_list2.append(self.cam_sync_label_save_dir) dir_list2.append(self.cam_sync_label_save_dir)
else: else:
dir_list1 = [ dir_list1 = [
self.calib_save_dir, self.point_cloud_save_dir, self.calib_save_dir, self.pose_save_dir,
self.pose_save_dir, self.timestamp_save_dir self.timestamp_save_dir
] ]
dir_list2 = [self.image_save_dir] dir_list2 = [self.image_save_dir]
if 'testing_3d_camera_only_detection' not in self.load_dir:
dir_list1.append(self.point_cloud_save_dir)
for d in dir_list1: for d in dir_list1:
mmengine.mkdir_or_exist(d) mmengine.mkdir_or_exist(d)
for d in dir_list2: for d in dir_list2:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment