voxel_encoder.py 27.4 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
from typing import Optional, Sequence, Tuple

zhangwenwei's avatar
zhangwenwei committed
4
import torch
5
from mmcv.cnn import build_norm_layer
6
from mmcv.ops import DynamicScatter
jshilong's avatar
jshilong committed
7
from torch import Tensor, nn
zhangwenwei's avatar
zhangwenwei committed
8

9
from mmdet3d.registry import MODELS
zhangwenwei's avatar
zhangwenwei committed
10
from .utils import VFELayer, get_paddings_indicator
zhangwenwei's avatar
zhangwenwei committed
11
12


13
@MODELS.register_module()
zhangwenwei's avatar
zhangwenwei committed
14
class HardSimpleVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
15
    """Simple voxel feature encoder used in SECOND.
zhangwenwei's avatar
zhangwenwei committed
16

zhangwenwei's avatar
zhangwenwei committed
17
    It simply averages the values of points in a voxel.
18
19

    Args:
20
        num_features (int, optional): Number of features to use. Default: 4.
zhangwenwei's avatar
zhangwenwei committed
21
    """
zhangwenwei's avatar
zhangwenwei committed
22

jshilong's avatar
jshilong committed
23
    def __init__(self, num_features: int = 4) -> None:
zhangwenwei's avatar
zhangwenwei committed
24
        super(HardSimpleVFE, self).__init__()
25
        self.num_features = num_features
zhangwenwei's avatar
zhangwenwei committed
26

jshilong's avatar
jshilong committed
27
28
    def forward(self, features: Tensor, num_points: Tensor, coors: Tensor,
                *args, **kwargs) -> Tensor:
zhangwenwei's avatar
zhangwenwei committed
29
        """Forward function.
zhangwenwei's avatar
zhangwenwei committed
30
31

        Args:
wangtai's avatar
wangtai committed
32
            features (torch.Tensor): Point features in shape
zhangwenwei's avatar
zhangwenwei committed
33
34
35
36
37
38
39
40
41
                (N, M, 3(4)). N is the number of voxels and M is the maximum
                number of points inside a single voxel.
            num_points (torch.Tensor): Number of points in each voxel,
                 shape (N, ).
            coors (torch.Tensor): Coordinates of voxels.

        Returns:
            torch.Tensor: Mean of points inside each voxel in shape (N, 3(4))
        """
42
        points_mean = features[:, :, :self.num_features].sum(
zhangwenwei's avatar
zhangwenwei committed
43
44
45
46
            dim=1, keepdim=False) / num_points.type_as(features).view(-1, 1)
        return points_mean.contiguous()


47
@MODELS.register_module()
zhangwenwei's avatar
zhangwenwei committed
48
class DynamicSimpleVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
49
    """Simple dynamic voxel feature encoder used in DV-SECOND.
zhangwenwei's avatar
zhangwenwei committed
50
51
52
53
54
55
56
57

    It simply averages the values of points in a voxel.
    But the number of points in a voxel is dynamic and varies.

    Args:
        voxel_size (tupe[float]): Size of a single voxel
        point_cloud_range (tuple[float]): Range of the point cloud and voxels
    """
zhangwenwei's avatar
zhangwenwei committed
58
59

    def __init__(self,
60
61
                 voxel_size: Tuple[float] = (0.2, 0.2, 4),
                 point_cloud_range: Tuple[float] = (0, -40, -3, 70.4, 40, 1)):
zhangwenwei's avatar
zhangwenwei committed
62
        super(DynamicSimpleVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
63
64
65
        self.scatter = DynamicScatter(voxel_size, point_cloud_range, True)

    @torch.no_grad()
66
67
    def forward(self, features: Tensor, coors: Tensor, *args,
                **kwargs) -> Tensor:
zhangwenwei's avatar
zhangwenwei committed
68
        """Forward function.
zhangwenwei's avatar
zhangwenwei committed
69
70

        Args:
wangtai's avatar
wangtai committed
71
            features (torch.Tensor): Point features in shape
zhangwenwei's avatar
zhangwenwei committed
72
73
74
75
76
77
78
                (N, 3(4)). N is the number of points.
            coors (torch.Tensor): Coordinates of voxels.

        Returns:
            torch.Tensor: Mean of points inside each voxel in shape (M, 3(4)).
                M is the number of voxels.
        """
zhangwenwei's avatar
zhangwenwei committed
79
80
81
82
83
84
        # This function is used from the start of the voxelnet
        # num_points: [concated_num_points]
        features, features_coors = self.scatter(features, coors)
        return features, features_coors


85
@MODELS.register_module()
zhangwenwei's avatar
zhangwenwei committed
86
class DynamicVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
87
    """Dynamic Voxel feature encoder used in DV-SECOND.
zhangwenwei's avatar
zhangwenwei committed
88
89
90
91
92
93

    It encodes features of voxels and their points. It could also fuse
    image feature into voxel features in a point-wise manner.
    The number of points inside the voxel varies.

    Args:
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        in_channels (int, optional): Input channels of VFE. Defaults to 4.
        feat_channels (list(int), optional): Channels of features in VFE.
        with_distance (bool, optional): Whether to use the L2 distance of
            points to the origin point. Defaults to False.
        with_cluster_center (bool, optional): Whether to use the distance
            to cluster center of points inside a voxel. Defaults to False.
        with_voxel_center (bool, optional): Whether to use the distance
            to center of voxel for each points inside a voxel.
            Defaults to False.
        voxel_size (tuple[float], optional): Size of a single voxel.
            Defaults to (0.2, 0.2, 4).
        point_cloud_range (tuple[float], optional): The range of points
            or voxels. Defaults to (0, -40, -3, 70.4, 40, 1).
        norm_cfg (dict, optional): Config dict of normalization layers.
        mode (str, optional): The mode when pooling features of points
            inside a voxel. Available options include 'max' and 'avg'.
            Defaults to 'max'.
        fusion_layer (dict, optional): The config dict of fusion
            layer used in multi-modal detectors. Defaults to None.
        return_point_feats (bool, optional): Whether to return the features
            of each points. Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
115
    """
zhangwenwei's avatar
zhangwenwei committed
116
117

    def __init__(self,
118
119
120
121
122
123
124
125
126
127
128
                 in_channels: int = 4,
                 feat_channels: list = [],
                 with_distance: bool = False,
                 with_cluster_center: bool = False,
                 with_voxel_center: bool = False,
                 voxel_size: Tuple[float] = (0.2, 0.2, 4),
                 point_cloud_range: Tuple[float] = (0, -40, -3, 70.4, 40, 1),
                 norm_cfg: dict = dict(type='BN1d', eps=1e-3, momentum=0.01),
                 mode: str = 'max',
                 fusion_layer: dict = None,
                 return_point_feats: bool = False):
zhangwenwei's avatar
zhangwenwei committed
129
        super(DynamicVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
130
131
        assert mode in ['avg', 'max']
        assert len(feat_channels) > 0
zhangwenwei's avatar
zhangwenwei committed
132
        if with_cluster_center:
zhangwenwei's avatar
zhangwenwei committed
133
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
134
        if with_voxel_center:
zhangwenwei's avatar
zhangwenwei committed
135
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
136
        if with_distance:
137
            in_channels += 1
zhangwenwei's avatar
zhangwenwei committed
138
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        self._with_distance = with_distance
        self._with_cluster_center = with_cluster_center
        self._with_voxel_center = with_voxel_center
        self.return_point_feats = return_point_feats

        # Need pillar (voxel) size and x/y offset in order to calculate offset
        self.vx = voxel_size[0]
        self.vy = voxel_size[1]
        self.vz = voxel_size[2]
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]
        self.point_cloud_range = point_cloud_range

zhangwenwei's avatar
zhangwenwei committed
153
        feat_channels = [self.in_channels] + list(feat_channels)
zhangwenwei's avatar
zhangwenwei committed
154
        vfe_layers = []
zhangwenwei's avatar
zhangwenwei committed
155
156
157
        for i in range(len(feat_channels) - 1):
            in_filters = feat_channels[i]
            out_filters = feat_channels[i + 1]
zhangwenwei's avatar
zhangwenwei committed
158
159
160
161
162
163
164
            if i > 0:
                in_filters *= 2
            norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters)
            vfe_layers.append(
                nn.Sequential(
                    nn.Linear(in_filters, out_filters, bias=False), norm_layer,
                    nn.ReLU(inplace=True)))
165
        self.vfe_layers = nn.ModuleList(vfe_layers)
zhangwenwei's avatar
zhangwenwei committed
166
167
168
169
170
171
172
        self.num_vfe = len(vfe_layers)
        self.vfe_scatter = DynamicScatter(voxel_size, point_cloud_range,
                                          (mode != 'max'))
        self.cluster_scatter = DynamicScatter(
            voxel_size, point_cloud_range, average_points=True)
        self.fusion_layer = None
        if fusion_layer is not None:
173
            self.fusion_layer = MODELS.build(fusion_layer)
zhangwenwei's avatar
zhangwenwei committed
174

175
176
    def map_voxel_center_to_point(self, pts_coors: Tensor, voxel_mean: Tensor,
                                  voxel_coors: Tensor) -> Tensor:
zhangwenwei's avatar
zhangwenwei committed
177
178
179
180
181
182
183
184
185
186
        """Map voxel features to its corresponding points.

        Args:
            pts_coors (torch.Tensor): Voxel coordinate of each point.
            voxel_mean (torch.Tensor): Voxel features to be mapped.
            voxel_coors (torch.Tensor): Coordinates of valid voxels

        Returns:
            torch.Tensor: Features or centers of each point.
        """
zhangwenwei's avatar
zhangwenwei committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        # Step 1: scatter voxel into canvas
        # Calculate necessary things for canvas creation
        canvas_z = int(
            (self.point_cloud_range[5] - self.point_cloud_range[2]) / self.vz)
        canvas_y = int(
            (self.point_cloud_range[4] - self.point_cloud_range[1]) / self.vy)
        canvas_x = int(
            (self.point_cloud_range[3] - self.point_cloud_range[0]) / self.vx)
        # canvas_channel = voxel_mean.size(1)
        batch_size = pts_coors[-1, 0] + 1
        canvas_len = canvas_z * canvas_y * canvas_x * batch_size
        # Create the canvas for this sample
        canvas = voxel_mean.new_zeros(canvas_len, dtype=torch.long)
        # Only include non-empty pillars
        indices = (
            voxel_coors[:, 0] * canvas_z * canvas_y * canvas_x +
            voxel_coors[:, 1] * canvas_y * canvas_x +
            voxel_coors[:, 2] * canvas_x + voxel_coors[:, 3])
        # Scatter the blob back to the canvas
        canvas[indices.long()] = torch.arange(
            start=0, end=voxel_mean.size(0), device=voxel_mean.device)

        # Step 2: get voxel mean for each point
        voxel_index = (
            pts_coors[:, 0] * canvas_z * canvas_y * canvas_x +
            pts_coors[:, 1] * canvas_y * canvas_x +
            pts_coors[:, 2] * canvas_x + pts_coors[:, 3])
        voxel_inds = canvas[voxel_index.long()]
        center_per_point = voxel_mean[voxel_inds, ...]
        return center_per_point

    def forward(self,
219
220
221
222
223
                features: Tensor,
                coors: Tensor,
                points: Optional[Sequence[Tensor]] = None,
                img_feats: Optional[Sequence[Tensor]] = None,
                img_metas: Optional[dict] = None,
jshilong's avatar
jshilong committed
224
                *args,
225
                **kwargs) -> tuple:
zhangwenwei's avatar
zhangwenwei committed
226
        """Forward functions.
zhangwenwei's avatar
zhangwenwei committed
227
228
229
230
231
232

        Args:
            features (torch.Tensor): Features of voxels, shape is NxC.
            coors (torch.Tensor): Coordinates of voxels, shape is  Nx(1+NDim).
            points (list[torch.Tensor], optional): Raw points used to guide the
                multi-modality fusion. Defaults to None.
233
            img_feats (list[torch.Tensor], optional): Image features used for
zhangwenwei's avatar
zhangwenwei committed
234
                multi-modality fusion. Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
235
            img_metas (dict, optional): [description]. Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
236
237
238
239
240

        Returns:
            tuple: If `return_point_feats` is False, returns voxel features and
                its coordinates. If `return_point_feats` is True, returns
                feature of each points inside voxels.
zhangwenwei's avatar
zhangwenwei committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        """
        features_ls = [features]
        # Find distance of x, y, and z from cluster center
        if self._with_cluster_center:
            voxel_mean, mean_coors = self.cluster_scatter(features, coors)
            points_mean = self.map_voxel_center_to_point(
                coors, voxel_mean, mean_coors)
            # TODO: maybe also do cluster for reflectivity
            f_cluster = features[:, :3] - points_mean[:, :3]
            features_ls.append(f_cluster)

        # Find distance of x, y, and z from pillar center
        if self._with_voxel_center:
            f_center = features.new_zeros(size=(features.size(0), 3))
            f_center[:, 0] = features[:, 0] - (
                coors[:, 3].type_as(features) * self.vx + self.x_offset)
            f_center[:, 1] = features[:, 1] - (
                coors[:, 2].type_as(features) * self.vy + self.y_offset)
            f_center[:, 2] = features[:, 2] - (
                coors[:, 1].type_as(features) * self.vz + self.z_offset)
            features_ls.append(f_center)

        if self._with_distance:
            points_dist = torch.norm(features[:, :3], 2, 1, keepdim=True)
            features_ls.append(points_dist)

        # Combine together feature decorations
        features = torch.cat(features_ls, dim=-1)
        for i, vfe in enumerate(self.vfe_layers):
            point_feats = vfe(features)
            if (i == len(self.vfe_layers) - 1 and self.fusion_layer is not None
                    and img_feats is not None):
                point_feats = self.fusion_layer(img_feats, points, point_feats,
zhangwenwei's avatar
zhangwenwei committed
274
                                                img_metas)
zhangwenwei's avatar
zhangwenwei committed
275
276
277
278
279
280
281
282
283
284
285
286
            voxel_feats, voxel_coors = self.vfe_scatter(point_feats, coors)
            if i != len(self.vfe_layers) - 1:
                # need to concat voxel feats if it is not the last vfe
                feat_per_point = self.map_voxel_center_to_point(
                    coors, voxel_feats, voxel_coors)
                features = torch.cat([point_feats, feat_per_point], dim=1)

        if self.return_point_feats:
            return point_feats
        return voxel_feats, voxel_coors


287
@MODELS.register_module()
zhangwenwei's avatar
zhangwenwei committed
288
class HardVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
289
    """Voxel feature encoder used in DV-SECOND.
zhangwenwei's avatar
zhangwenwei committed
290
291
292
293
294

    It encodes features of voxels and their points. It could also fuse
    image feature into voxel features in a point-wise manner.

    Args:
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        in_channels (int, optional): Input channels of VFE. Defaults to 4.
        feat_channels (list(int), optional): Channels of features in VFE.
        with_distance (bool, optional): Whether to use the L2 distance
            of points to the origin point. Defaults to False.
        with_cluster_center (bool, optional): Whether to use the distance
            to cluster center of points inside a voxel. Defaults to False.
        with_voxel_center (bool, optional): Whether to use the distance to
            center of voxel for each points inside a voxel. Defaults to False.
        voxel_size (tuple[float], optional): Size of a single voxel.
            Defaults to (0.2, 0.2, 4).
        point_cloud_range (tuple[float], optional): The range of points
            or voxels. Defaults to (0, -40, -3, 70.4, 40, 1).
        norm_cfg (dict, optional): Config dict of normalization layers.
        mode (str, optional): The mode when pooling features of points inside a
            voxel. Available options include 'max' and 'avg'.
            Defaults to 'max'.
        fusion_layer (dict, optional): The config dict of fusion layer
            used in multi-modal detectors. Defaults to None.
        return_point_feats (bool, optional): Whether to return the
            features of each points. Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
315
    """
zhangwenwei's avatar
zhangwenwei committed
316
317

    def __init__(self,
318
319
320
321
322
323
324
325
326
327
328
                 in_channels: int = 4,
                 feat_channels: list = [],
                 with_distance: bool = False,
                 with_cluster_center: bool = False,
                 with_voxel_center: bool = False,
                 voxel_size: Tuple[float] = (0.2, 0.2, 4),
                 point_cloud_range: Tuple[float] = (0, -40, -3, 70.4, 40, 1),
                 norm_cfg: dict = dict(type='BN1d', eps=1e-3, momentum=0.01),
                 mode: str = 'max',
                 fusion_layer: dict = None,
                 return_point_feats: bool = False):
zhangwenwei's avatar
zhangwenwei committed
329
        super(HardVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
330
        assert len(feat_channels) > 0
zhangwenwei's avatar
zhangwenwei committed
331
        if with_cluster_center:
zhangwenwei's avatar
zhangwenwei committed
332
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
333
        if with_voxel_center:
zhangwenwei's avatar
zhangwenwei committed
334
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
335
        if with_distance:
336
            in_channels += 1
zhangwenwei's avatar
zhangwenwei committed
337
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        self._with_distance = with_distance
        self._with_cluster_center = with_cluster_center
        self._with_voxel_center = with_voxel_center
        self.return_point_feats = return_point_feats

        # Need pillar (voxel) size and x/y offset to calculate pillar offset
        self.vx = voxel_size[0]
        self.vy = voxel_size[1]
        self.vz = voxel_size[2]
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]
        self.point_cloud_range = point_cloud_range

zhangwenwei's avatar
zhangwenwei committed
352
        feat_channels = [self.in_channels] + list(feat_channels)
zhangwenwei's avatar
zhangwenwei committed
353
        vfe_layers = []
zhangwenwei's avatar
zhangwenwei committed
354
355
356
        for i in range(len(feat_channels) - 1):
            in_filters = feat_channels[i]
            out_filters = feat_channels[i + 1]
zhangwenwei's avatar
zhangwenwei committed
357
358
359
360
            if i > 0:
                in_filters *= 2
            # TODO: pass norm_cfg to VFE
            # norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters)
zhangwenwei's avatar
zhangwenwei committed
361
            if i == (len(feat_channels) - 2):
zhangwenwei's avatar
zhangwenwei committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
                cat_max = False
                max_out = True
                if fusion_layer:
                    max_out = False
            else:
                max_out = True
                cat_max = True
            vfe_layers.append(
                VFELayer(
                    in_filters,
                    out_filters,
                    norm_cfg=norm_cfg,
                    max_out=max_out,
                    cat_max=cat_max))
            self.vfe_layers = nn.ModuleList(vfe_layers)
        self.num_vfe = len(vfe_layers)

        self.fusion_layer = None
        if fusion_layer is not None:
381
            self.fusion_layer = MODELS.build(fusion_layer)
zhangwenwei's avatar
zhangwenwei committed
382
383

    def forward(self,
384
385
386
387
388
                features: Tensor,
                num_points: Tensor,
                coors: Tensor,
                img_feats: Optional[Sequence[Tensor]] = None,
                img_metas: Optional[dict] = None,
jshilong's avatar
jshilong committed
389
                *args,
390
                **kwargs) -> tuple:
zhangwenwei's avatar
zhangwenwei committed
391
        """Forward functions.
zhangwenwei's avatar
zhangwenwei committed
392
393
394
395
396

        Args:
            features (torch.Tensor): Features of voxels, shape is MxNxC.
            num_points (torch.Tensor): Number of points in each voxel.
            coors (torch.Tensor): Coordinates of voxels, shape is Mx(1+NDim).
397
            img_feats (list[torch.Tensor], optional): Image features used for
zhangwenwei's avatar
zhangwenwei committed
398
                multi-modality fusion. Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
399
            img_metas (dict, optional): [description]. Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
400
401
402
403
404

        Returns:
            tuple: If `return_point_feats` is False, returns voxel features and
                its coordinates. If `return_point_feats` is True, returns
                feature of each points inside voxels.
zhangwenwei's avatar
zhangwenwei committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
        """
        features_ls = [features]
        # Find distance of x, y, and z from cluster center
        if self._with_cluster_center:
            points_mean = (
                features[:, :, :3].sum(dim=1, keepdim=True) /
                num_points.type_as(features).view(-1, 1, 1))
            # TODO: maybe also do cluster for reflectivity
            f_cluster = features[:, :, :3] - points_mean
            features_ls.append(f_cluster)

        # Find distance of x, y, and z from pillar center
        if self._with_voxel_center:
            f_center = features.new_zeros(
                size=(features.size(0), features.size(1), 3))
            f_center[:, :, 0] = features[:, :, 0] - (
                coors[:, 3].type_as(features).unsqueeze(1) * self.vx +
                self.x_offset)
            f_center[:, :, 1] = features[:, :, 1] - (
                coors[:, 2].type_as(features).unsqueeze(1) * self.vy +
                self.y_offset)
            f_center[:, :, 2] = features[:, :, 2] - (
                coors[:, 1].type_as(features).unsqueeze(1) * self.vz +
                self.z_offset)
            features_ls.append(f_center)

        if self._with_distance:
            points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True)
            features_ls.append(points_dist)

        # Combine together feature decorations
        voxel_feats = torch.cat(features_ls, dim=-1)
        # The feature decorations were calculated without regard to whether
        # pillar was empty.
        # Need to ensure that empty voxels remain set to zeros.
        voxel_count = voxel_feats.shape[1]
        mask = get_paddings_indicator(num_points, voxel_count, axis=0)
        voxel_feats *= mask.unsqueeze(-1).type_as(voxel_feats)

        for i, vfe in enumerate(self.vfe_layers):
            voxel_feats = vfe(voxel_feats)
zhangwenwei's avatar
zhangwenwei committed
446

zhangwenwei's avatar
zhangwenwei committed
447
448
        if (self.fusion_layer is not None and img_feats is not None):
            voxel_feats = self.fusion_with_mask(features, mask, voxel_feats,
zhangwenwei's avatar
zhangwenwei committed
449
                                                coors, img_feats, img_metas)
zhangwenwei's avatar
zhangwenwei committed
450

zhangwenwei's avatar
zhangwenwei committed
451
452
        return voxel_feats

453
454
455
456
    def fusion_with_mask(self, features: Tensor, mask: Tensor,
                         voxel_feats: Tensor, coors: Tensor,
                         img_feats: Sequence[Tensor],
                         img_metas: Sequence[dict]) -> Tensor:
zhangwenwei's avatar
zhangwenwei committed
457
458
459
460
461
462
463
464
465
        """Fuse image and point features with mask.

        Args:
            features (torch.Tensor): Features of voxel, usually it is the
                values of points in voxels.
            mask (torch.Tensor): Mask indicates valid features in each voxel.
            voxel_feats (torch.Tensor): Features of voxels.
            coors (torch.Tensor): Coordinates of each single voxel.
            img_feats (list[torch.Tensor]): Multi-scale feature maps of image.
zhangwenwei's avatar
zhangwenwei committed
466
            img_metas (list(dict)): Meta information of image and points.
zhangwenwei's avatar
zhangwenwei committed
467
468
469
470

        Returns:
            torch.Tensor: Fused features of each voxel.
        """
zhangwenwei's avatar
zhangwenwei committed
471
472
473
474
475
476
477
478
479
        # the features is consist of a batch of points
        batch_size = coors[-1, 0] + 1
        points = []
        for i in range(batch_size):
            single_mask = (coors[:, 0] == i)
            points.append(features[single_mask][mask[single_mask]])

        point_feats = voxel_feats[mask]
        point_feats = self.fusion_layer(img_feats, points, point_feats,
zhangwenwei's avatar
zhangwenwei committed
480
                                        img_metas)
zhangwenwei's avatar
zhangwenwei committed
481

zhangwenwei's avatar
zhangwenwei committed
482
483
484
485
486
        voxel_canvas = voxel_feats.new_zeros(
            size=(voxel_feats.size(0), voxel_feats.size(1),
                  point_feats.size(-1)))
        voxel_canvas[mask] = point_feats
        out = torch.max(voxel_canvas, dim=1)[0]
zhangwenwei's avatar
zhangwenwei committed
487

zhangwenwei's avatar
zhangwenwei committed
488
        return out
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508


@MODELS.register_module()
class SegVFE(nn.Module):
    """Voxel feature encoder used in segmentation task.

    It encodes features of voxels and their points. It could also fuse
    image feature into voxel features in a point-wise manner.
    The number of points inside the voxel varies.

    Args:
        in_channels (int): Input channels of VFE. Defaults to 6.
        feat_channels (list(int)): Channels of features in VFE.
        with_voxel_center (bool): Whether to use the distance
            to center of voxel for each points inside a voxel.
            Defaults to False.
        voxel_size (tuple[float]): Size of a single voxel (rho, phi, z).
            Defaults to None.
        grid_shape (tuple[float]): The grid shape of voxelization.
            Defaults to (480, 360, 32).
509
510
        point_cloud_range (tuple[float]): The range of points or voxels.
            Defaults to (0, -3.14159265359, -4, 50, 3.14159265359, 2).
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        norm_cfg (dict): Config dict of normalization layers.
        mode (str): The mode when pooling features of points
            inside a voxel. Available options include 'max' and 'avg'.
            Defaults to 'max'.
        with_pre_norm (bool): Whether to use the norm layer before
            input vfe layer.
        feat_compression (int, optional): The voxel feature compression
            channels, Defaults to None
        return_point_feats (bool): Whether to return the features
            of each points. Defaults to False.
    """

    def __init__(self,
                 in_channels: int = 6,
                 feat_channels: Sequence[int] = [],
                 with_voxel_center: bool = False,
                 voxel_size: Optional[Sequence[float]] = None,
                 grid_shape: Sequence[float] = (480, 360, 32),
529
530
                 point_cloud_range: Sequence[float] = (0, -3.14159265359, -4,
                                                       50, 3.14159265359, 2),
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
                 norm_cfg: dict = dict(type='BN1d', eps=1e-5, momentum=0.1),
                 mode: bool = 'max',
                 with_pre_norm: bool = True,
                 feat_compression: Optional[int] = None,
                 return_point_feats: bool = False) -> None:
        super(SegVFE, self).__init__()
        assert mode in ['avg', 'max']
        assert len(feat_channels) > 0
        assert not (voxel_size and grid_shape), \
            'voxel_size and grid_shape cannot be setting at the same time'
        if with_voxel_center:
            in_channels += 3
        self.in_channels = in_channels
        self._with_voxel_center = with_voxel_center
        self.return_point_feats = return_point_feats

        self.point_cloud_range = point_cloud_range
        point_cloud_range = torch.tensor(
            point_cloud_range, dtype=torch.float32)
        if voxel_size:
            self.voxel_size = voxel_size
            voxel_size = torch.tensor(voxel_size, dtype=torch.float32)
            grid_shape = (point_cloud_range[3:] -
                          point_cloud_range[:3]) / voxel_size
            grid_shape = torch.round(grid_shape).long().tolist()
            self.grid_shape = grid_shape
        elif grid_shape:
            grid_shape = torch.tensor(grid_shape, dtype=torch.float32)
            voxel_size = (point_cloud_range[3:] - point_cloud_range[:3]) / (
                grid_shape - 1)
            voxel_size = voxel_size.tolist()
            self.voxel_size = voxel_size
        else:
            raise ValueError('must assign a value to voxel_size or grid_shape')

        # Need pillar (voxel) size and x/y offset in order to calculate offset
        self.vx = self.voxel_size[0]
568
569
        self.vy = self.voxel_size[1]
        self.vz = self.voxel_size[2]
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]

        feat_channels = [self.in_channels] + list(feat_channels)
        if with_pre_norm:
            self.pre_norm = build_norm_layer(norm_cfg, self.in_channels)[1]
        vfe_layers = []
        for i in range(len(feat_channels) - 1):
            in_filters = feat_channels[i]
            out_filters = feat_channels[i + 1]
            norm_layer = build_norm_layer(norm_cfg, out_filters)[1]
            if i == len(feat_channels) - 2:
                vfe_layers.append(nn.Linear(in_filters, out_filters))
            else:
                vfe_layers.append(
                    nn.Sequential(
                        nn.Linear(in_filters, out_filters), norm_layer,
                        nn.ReLU(inplace=True)))
        self.vfe_layers = nn.ModuleList(vfe_layers)
        self.vfe_scatter = DynamicScatter(self.voxel_size,
                                          self.point_cloud_range,
                                          (mode != 'max'))
        self.compression_layers = None
        if feat_compression is not None:
595
596
            self.compression_layers = nn.Sequential(
                nn.Linear(feat_channels[-1], feat_compression), nn.ReLU())
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

    def forward(self, features: Tensor, coors: Tensor, *args,
                **kwargs) -> Tuple[Tensor]:
        """Forward functions.

        Args:
            features (Tensor): Features of voxels, shape is NxC.
            coors (Tensor): Coordinates of voxels, shape is  Nx(1+NDim).

        Returns:
            tuple: If `return_point_feats` is False, returns voxel features and
                its coordinates. If `return_point_feats` is True, returns
                feature of each points inside voxels additionally.
        """
        features_ls = [features]

        # Find distance of x, y, and z from voxel center
        if self._with_voxel_center:
            f_center = features.new_zeros(size=(features.size(0), 3))
            f_center[:, 0] = features[:, 0] - (
617
                coors[:, 1].type_as(features) * self.vx + self.x_offset)
618
619
620
            f_center[:, 1] = features[:, 1] - (
                coors[:, 2].type_as(features) * self.vy + self.y_offset)
            f_center[:, 2] = features[:, 2] - (
621
                coors[:, 3].type_as(features) * self.vz + self.z_offset)
622
623
624
625
626
627
628
629
            features_ls.append(f_center)

        # Combine together feature decorations
        features = torch.cat(features_ls[::-1], dim=-1)
        if self.pre_norm is not None:
            features = self.pre_norm(features)

        point_feats = []
630
        for vfe in self.vfe_layers:
631
632
            features = vfe(features)
            point_feats.append(features)
633
        voxel_feats, voxel_coors = self.vfe_scatter(features, coors)
634
635
636
637
638
639
640

        if self.compression_layers is not None:
            voxel_feats = self.compression_layers(voxel_feats)

        if self.return_point_feats:
            return voxel_feats, voxel_coors, point_feats
        return voxel_feats, voxel_coors