nuimage_converter.py 7.42 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
import argparse
import base64
4
5
from os import path as osp

6
7
8
import mmcv
import numpy as np
from nuimages import NuImages
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from nuimages.utils.utils import mask_decode, name_to_index_mapping

nus_categories = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
                  'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
                  'barrier')

NAME_MAPPING = {
    'movable_object.barrier': 'barrier',
    'vehicle.bicycle': 'bicycle',
    'vehicle.bus.bendy': 'bus',
    'vehicle.bus.rigid': 'bus',
    'vehicle.car': 'car',
    'vehicle.construction': 'construction_vehicle',
    'vehicle.motorcycle': 'motorcycle',
    'human.pedestrian.adult': 'pedestrian',
    'human.pedestrian.child': 'pedestrian',
    'human.pedestrian.construction_worker': 'pedestrian',
    'human.pedestrian.police_officer': 'pedestrian',
    'movable_object.trafficcone': 'traffic_cone',
    'vehicle.trailer': 'trailer',
    'vehicle.truck': 'truck',
}
31
32
33
34
35
36
37
38
39
40
41
42
43


def parse_args():
    parser = argparse.ArgumentParser(description='Data converter arg parser')
    parser.add_argument(
        '--data-root',
        type=str,
        default='./data/nuimages',
        help='specify the root path of dataset')
    parser.add_argument(
        '--version',
        type=str,
        nargs='+',
44
        default=['v1.0-mini'],
45
46
47
48
49
50
51
52
        required=False,
        help='specify the dataset version')
    parser.add_argument(
        '--out-dir',
        type=str,
        default='./data/nuimages/annotations/',
        required=False,
        help='path to save the exported json')
53
54
55
56
57
58
    parser.add_argument(
        '--nproc',
        type=int,
        default=4,
        required=False,
        help='workers to process semantic masks')
59
60
61
62
63
    parser.add_argument('--extra-tag', type=str, default='nuimages')
    args = parser.parse_args()
    return args


64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def get_img_annos(nuim, img_info, cat2id, out_dir, data_root, seg_root):
    """Get semantic segmentation map for an image.

    Args:
        nuim (obj:`NuImages`): NuImages dataset object
        img_info (dict): Meta information of img

    Returns:
        np.ndarray: Semantic segmentation map of the image
    """
    sd_token = img_info['token']
    image_id = img_info['id']
    name_to_index = name_to_index_mapping(nuim.category)

    # Get image data.
    width, height = img_info['width'], img_info['height']
    semseg_mask = np.zeros((height, width)).astype('uint8')

    # Load stuff / surface regions.
    surface_anns = [
        o for o in nuim.surface_ann if o['sample_data_token'] == sd_token
    ]
86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    # Draw stuff / surface regions.
    for ann in surface_anns:
        # Get color and mask.
        category_token = ann['category_token']
        category_name = nuim.get('category', category_token)['name']
        if ann['mask'] is None:
            continue
        mask = mask_decode(ann['mask'])

        # Draw mask for semantic segmentation.
        semseg_mask[mask == 1] = name_to_index[category_name]

    # Load object instances.
    object_anns = [
        o for o in nuim.object_ann if o['sample_data_token'] == sd_token
    ]

    # Sort by token to ensure that objects always appear in the
    # instance mask in the same order.
    object_anns = sorted(object_anns, key=lambda k: k['token'])

    # Draw object instances.
    # The 0 index is reserved for background; thus, the instances
    # should start from index 1.
    annotations = []
    for i, ann in enumerate(object_anns, start=1):
        # Get color, box, mask and name.
        category_token = ann['category_token']
        category_name = nuim.get('category', category_token)['name']
        if ann['mask'] is None:
            continue
        mask = mask_decode(ann['mask'])

        # Draw masks for semantic segmentation and instance segmentation.
        semseg_mask[mask == 1] = name_to_index[category_name]

        if category_name in NAME_MAPPING:
            cat_name = NAME_MAPPING[category_name]
            cat_id = cat2id[cat_name]

            x_min, y_min, x_max, y_max = ann['bbox']
            # encode calibrated instance mask
            mask_anno = dict()
            mask_anno['counts'] = base64.b64decode(
                ann['mask']['counts']).decode()
            mask_anno['size'] = ann['mask']['size']

            data_anno = dict(
                image_id=image_id,
                category_id=cat_id,
                bbox=[x_min, y_min, x_max - x_min, y_max - y_min],
                area=(x_max - x_min) * (y_max - y_min),
                segmentation=mask_anno,
                iscrowd=0)
            annotations.append(data_anno)

    # after process, save semantic masks
    img_filename = img_info['file_name']
    seg_filename = img_filename.replace('jpg', 'png')
    seg_filename = osp.join(seg_root, seg_filename)
    mmcv.imwrite(semseg_mask, seg_filename)
    return annotations, np.max(semseg_mask)


def export_nuim_to_coco(nuim, data_root, out_dir, extra_tag, version, nproc):
152
153
    print('Process category information')
    categories = []
154
155
156
157
158
    categories = [
        dict(id=nus_categories.index(cat_name), name=cat_name)
        for cat_name in nus_categories
    ]
    cat2id = {k_v['name']: k_v['id'] for k_v in categories}
159
160
161
162
163
164
165
166
167

    images = []
    print('Process image meta information...')
    for sample_info in mmcv.track_iter_progress(nuim.sample_data):
        if sample_info['is_key_frame']:
            img_idx = len(images)
            images.append(
                dict(
                    id=img_idx,
168
                    token=sample_info['token'],
169
170
171
172
                    file_name=sample_info['filename'],
                    width=sample_info['width'],
                    height=sample_info['height']))

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    seg_root = f'{out_dir}semantic_masks'
    mmcv.mkdir_or_exist(seg_root)
    mmcv.mkdir_or_exist(osp.join(data_root, 'calibrated'))

    global process_img_anno

    def process_img_anno(img_info):
        single_img_annos, max_cls_id = get_img_annos(nuim, img_info, cat2id,
                                                     out_dir, data_root,
                                                     seg_root)
        return single_img_annos, max_cls_id

    print('Process img annotations...')
    if nproc > 1:
        outputs = mmcv.track_parallel_progress(
            process_img_anno, images, nproc=nproc)
    else:
        outputs = []
        for img_info in mmcv.track_iter_progress(images):
            outputs.append(process_img_anno(img_info))

    # Determine the index of object annotation
195
196
    print('Process annotation information...')
    annotations = []
197
198
199
200
201
202
    max_cls_ids = []
    for single_img_annos, max_cls_id in outputs:
        max_cls_ids.append(max_cls_id)
        for img_anno in single_img_annos:
            img_anno.update(id=len(annotations))
            annotations.append(img_anno)
203

204
205
    max_cls_id = max(max_cls_ids)
    print(f'Max ID of class in the semantic map: {max_cls_id}')
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

    coco_format_json = dict(
        images=images, annotations=annotations, categories=categories)

    mmcv.mkdir_or_exist(out_dir)
    out_file = osp.join(out_dir, f'{extra_tag}_{version}.json')
    print(f'Annotation dumped to {out_file}')
    mmcv.dump(coco_format_json, out_file)


def main():
    args = parse_args()
    for version in args.version:
        nuim = NuImages(
            dataroot=args.data_root, version=version, verbose=True, lazy=True)
221
222
        export_nuim_to_coco(nuim, args.data_root, args.out_dir, args.extra_tag,
                            version, args.nproc)
223
224
225
226


if __name__ == '__main__':
    main()