centerpoint.py 3.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from mmdet3d.core import bbox3d2result
from mmdet.models import DETECTORS
from .mvx_two_stage import MVXTwoStageDetector


@DETECTORS.register_module()
class CenterPoint(MVXTwoStageDetector):
    """Base class of Multi-modality VoxelNet."""

    def __init__(self,
                 pts_voxel_layer=None,
                 pts_voxel_encoder=None,
                 pts_middle_encoder=None,
                 pts_fusion_layer=None,
                 img_backbone=None,
                 pts_backbone=None,
                 img_neck=None,
                 pts_neck=None,
                 pts_bbox_head=None,
                 img_roi_head=None,
                 img_rpn_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super(CenterPoint,
              self).__init__(pts_voxel_layer, pts_voxel_encoder,
                             pts_middle_encoder, pts_fusion_layer,
                             img_backbone, pts_backbone, img_neck, pts_neck,
                             pts_bbox_head, img_roi_head, img_rpn_head,
                             train_cfg, test_cfg, pretrained)

    def extract_pts_feat(self, pts, img_feats, img_metas):
        """Extract features of points."""
        if not self.with_pts_bbox:
            return None
        voxels, num_points, coors = self.voxelize(pts)

        voxel_features = self.pts_voxel_encoder(voxels, num_points, coors)
        batch_size = coors[-1, 0] + 1
        x = self.pts_middle_encoder(voxel_features, coors, batch_size)
        x = self.pts_backbone(x)
        if self.with_pts_neck:
            x = self.pts_neck(x)
        return x

    def forward_pts_train(self,
                          pts_feats,
                          gt_bboxes_3d,
                          gt_labels_3d,
                          img_metas,
                          gt_bboxes_ignore=None):
        """Forward function for point cloud branch.

        Args:
            pts_feats (list[torch.Tensor]): Features of point cloud branch
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth
                boxes for each sample.
            gt_labels_3d (list[torch.Tensor]): Ground truth labels for
                boxes of each sampole
            img_metas (list[dict]): Meta information of samples.
            gt_bboxes_ignore (list[torch.Tensor], optional): Ground truth
                boxes to be ignored. Defaults to None.

        Returns:
            dict: Losses of each branch.
        """
        outs = self.pts_bbox_head(pts_feats)
        loss_inputs = [gt_bboxes_3d, gt_labels_3d, outs]
        losses = self.pts_bbox_head.loss(*loss_inputs)
        return losses

    def simple_test_pts(self, x, img_metas, rescale=False):
        """Test function of point cloud branch."""
        outs = self.pts_bbox_head(x)
        bbox_list = self.pts_bbox_head.get_bboxes(
            outs, img_metas, rescale=rescale)
        bbox_results = [
            bbox3d2result(bboxes, scores, labels)
            for bboxes, scores, labels in bbox_list
        ]
        return bbox_results