test_votenet.py 2.79 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
import unittest

import torch
from mmengine import DefaultScope

from mmdet3d.registry import MODELS
zhangshilong's avatar
zhangshilong committed
7
from mmdet3d.structures import LiDARInstance3DBoxes
jshilong's avatar
jshilong committed
8
9
10
11
12
13
14
15
16
17
18
19
20
from tests.utils.model_utils import (_create_detector_inputs,
                                     _get_detector_cfg, _setup_seed)


class TestVotenet(unittest.TestCase):

    def test_voxel_net(self):
        import mmdet3d.models

        assert hasattr(mmdet3d.models, 'VoteNet')
        DefaultScope.get_instance('test_vote_net', scope_name='mmdet3d')
        _setup_seed(0)
        voxel_net_cfg = _get_detector_cfg(
21
            'votenet/votenet_8xb16_sunrgbd-3d.py')
jshilong's avatar
jshilong committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        model = MODELS.build(voxel_net_cfg)
        num_gt_instance = 50
        data = [_create_detector_inputs(num_gt_instance=num_gt_instance)]
        aug_data = [
            _create_detector_inputs(num_gt_instance=num_gt_instance),
            _create_detector_inputs(num_gt_instance=num_gt_instance + 1)
        ]
        # test_aug_test
        metainfo = {
            'pcd_scale_factor': 1,
            'pcd_horizontal_flip': 1,
            'pcd_vertical_flip': 1,
            'box_type_3d': LiDARInstance3DBoxes
        }
        for item in aug_data:
            item['data_sample'].set_metainfo(metainfo)
        if torch.cuda.is_available():
            model = model.cuda()
            # test simple_test
            with torch.no_grad():
                batch_inputs, data_samples = model.data_preprocessor(
                    data, True)
                results = model.forward(
                    batch_inputs, data_samples, mode='predict')
            self.assertEqual(len(results), len(data))
            self.assertIn('bboxes_3d', results[0].pred_instances_3d)
            self.assertIn('scores_3d', results[0].pred_instances_3d)
            self.assertIn('labels_3d', results[0].pred_instances_3d)
            batch_inputs, data_samples = model.data_preprocessor(
                aug_data, True)
            aug_results = model.forward(
                batch_inputs, data_samples, mode='predict')

            self.assertIn('bboxes_3d', aug_results[0].pred_instances_3d)
            self.assertIn('scores_3d', aug_results[0].pred_instances_3d)
            self.assertIn('labels_3d', aug_results[0].pred_instances_3d)

jshilong's avatar
jshilong committed
59
60
61
            # save the memory
            with torch.no_grad():
                losses = model.forward(batch_inputs, data_samples, mode='loss')
jshilong's avatar
jshilong committed
62
63
64
65
66
67
68
69
70
71

            self.assertGreater(losses['vote_loss'], 0)
            self.assertGreater(losses['objectness_loss'], 0)
            self.assertGreater(losses['semantic_loss'], 0)
            self.assertGreater(losses['dir_res_loss'], 0)
            self.assertGreater(losses['size_class_loss'], 0)
            self.assertGreater(losses['size_res_loss'], 0)
            self.assertGreater(losses['size_res_loss'], 0)

        # TODO test_aug_test