test_h3dnet.py 1.78 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import unittest

import torch
from mmengine import DefaultScope

from mmdet3d.registry import MODELS
from tests.utils.model_utils import (_create_detector_inputs,
                                     _get_detector_cfg, _setup_seed)


class TestH3D(unittest.TestCase):

    def test_h3dnet(self):
        import mmdet3d.models

        assert hasattr(mmdet3d.models, 'H3DNet')
        DefaultScope.get_instance('test_H3DNet', scope_name='mmdet3d')
        _setup_seed(0)
19
        voxel_net_cfg = _get_detector_cfg('h3dnet/h3dnet_8xb3_scannet-seg.py')
jshilong's avatar
jshilong committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
        model = MODELS.build(voxel_net_cfg)
        num_gt_instance = 5
        data = [
            _create_detector_inputs(
                num_gt_instance=num_gt_instance,
                points_feat_dim=4,
                bboxes_3d_type='depth',
                with_pts_semantic_mask=True,
                with_pts_instance_mask=True)
        ]

        if torch.cuda.is_available():
            model = model.cuda()
            # test simple_test
            with torch.no_grad():
                batch_inputs, data_samples = model.data_preprocessor(
                    data, True)
                results = model.forward(
                    batch_inputs, data_samples, mode='predict')
            self.assertEqual(len(results), len(data))
            self.assertIn('bboxes_3d', results[0].pred_instances_3d)
            self.assertIn('scores_3d', results[0].pred_instances_3d)
            self.assertIn('labels_3d', results[0].pred_instances_3d)

            # save the memory
            with torch.no_grad():
                losses = model.forward(batch_inputs, data_samples, mode='loss')

            self.assertGreater(losses['vote_loss'], 0)
            self.assertGreater(losses['objectness_loss'], 0)
            self.assertGreater(losses['center_loss'], 0)