test_3dssd.py 1.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import unittest

import torch
from mmengine import DefaultScope

from mmdet3d.registry import MODELS
from tests.utils.model_utils import (_create_detector_inputs,
                                     _get_detector_cfg, _setup_seed)


class Test3DSSD(unittest.TestCase):

    def test_3dssd(self):
        import mmdet3d.models

        assert hasattr(mmdet3d.models, 'SSD3DNet')
        DefaultScope.get_instance('test_ssd3d', scope_name='mmdet3d')
        _setup_seed(0)
19
        voxel_net_cfg = _get_detector_cfg('3dssd/3dssd_4xb4_kitti-3d-car.py')
20
21
22
23
24
25
26
27
28
29
30
31
32
        model = MODELS.build(voxel_net_cfg)
        num_gt_instance = 3
        data = [
            _create_detector_inputs(
                num_gt_instance=num_gt_instance, num_classes=1)
        ]

        if torch.cuda.is_available():
            model = model.cuda()
            # test simple_test
            with torch.no_grad():
                batch_inputs, data_samples = model.data_preprocessor(
                    data, True)
zhangshilong's avatar
zhangshilong committed
33
                torch.cuda.empty_cache()
34
35
36
37
38
39
40
41
42
43
                results = model.forward(
                    batch_inputs, data_samples, mode='predict')
            self.assertEqual(len(results), len(data))
            self.assertIn('bboxes_3d', results[0].pred_instances_3d)
            self.assertIn('scores_3d', results[0].pred_instances_3d)
            self.assertIn('labels_3d', results[0].pred_instances_3d)

            losses = model.forward(batch_inputs, data_samples, mode='loss')

            self.assertGreater(losses['centerness_loss'], 0)