pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py 3.97 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
_base_ = [
2
    '../_base_/models/pointpillars_hv_secfpn_kitti.py',
zhangwenwei's avatar
zhangwenwei committed
3
    '../_base_/datasets/kitti-3d-3class.py',
4
    '../_base_/schedules/cyclic-40e.py', '../_base_/default_runtime.py'
zhangwenwei's avatar
zhangwenwei committed
5
]
6

zhangwenwei's avatar
zhangwenwei committed
7
point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1]
8
9
10
# dataset settings
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
VVsssssk's avatar
VVsssssk committed
11
metainfo = dict(CLASSES=class_names)
12

zhangwenwei's avatar
zhangwenwei committed
13
# PointPillars adopted a different sampling strategies among classes
14
15
16
17
18
19
db_sampler = dict(
    data_root=data_root,
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
    prepare=dict(
        filter_by_difficulty=[-1],
20
        filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)),
21
    classes=class_names,
22
23
24
    sample_groups=dict(Car=15, Pedestrian=15, Cyclist=15),
    points_loader=dict(
        type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4))
25

zhangwenwei's avatar
zhangwenwei committed
26
# PointPillars uses different augmentation hyper parameters
27
train_pipeline = [
28
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
29
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
Xiangxu-0103's avatar
Xiangxu-0103 committed
30
    dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=True),
wuyuefeng's avatar
wuyuefeng committed
31
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
32
    dict(
zhangwenwei's avatar
zhangwenwei committed
33
34
35
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
36
37
38
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
VVsssssk's avatar
VVsssssk committed
39
40
41
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_labels_3d', 'gt_bboxes_3d'])
42
43
]
test_pipeline = [
44
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
45
    dict(
zhangwenwei's avatar
zhangwenwei committed
46
47
48
49
50
51
52
53
54
55
56
57
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
58
59
60
                type='PointsRangeFilter', point_cloud_range=point_cloud_range)
        ]),
    dict(type='Pack3DDetInputs', keys=['points'])
61
62
]

VVsssssk's avatar
VVsssssk committed
63
64
train_dataloader = dict(
    dataset=dict(dataset=dict(pipeline=train_pipeline, metainfo=metainfo)))
65
66
test_dataloader = dict(dataset=dict(pipeline=test_pipeline, metainfo=metainfo))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline, metainfo=metainfo))
zhangwenwei's avatar
zhangwenwei committed
67
# In practice PointPillars also uses a different schedule
68
# optimizer
zhangwenwei's avatar
zhangwenwei committed
69
lr = 0.001
VVsssssk's avatar
VVsssssk committed
70
71
72
73
74
75
epoch_num = 80
optim_wrapper = dict(
    optimizer=dict(lr=lr), clip_grad=dict(max_norm=35, norm_type=2))
param_scheduler = [
    dict(
        type='CosineAnnealingLR',
76
        T_max=epoch_num * 0.4,
VVsssssk's avatar
VVsssssk committed
77
78
        eta_min=lr * 10,
        begin=0,
79
80
81
        end=epoch_num * 0.4,
        by_epoch=True,
        convert_to_iter_based=True),
VVsssssk's avatar
VVsssssk committed
82
83
    dict(
        type='CosineAnnealingLR',
84
        T_max=epoch_num * 0.6,
VVsssssk's avatar
VVsssssk committed
85
        eta_min=lr * 1e-4,
86
87
88
89
        begin=epoch_num * 0.4,
        end=epoch_num * 1,
        by_epoch=True,
        convert_to_iter_based=True),
VVsssssk's avatar
VVsssssk committed
90
    dict(
91
        type='CosineAnnealingMomentum',
92
        T_max=epoch_num * 0.4,
VVsssssk's avatar
VVsssssk committed
93
94
        eta_min=0.85 / 0.95,
        begin=0,
95
96
97
        end=epoch_num * 0.4,
        by_epoch=True,
        convert_to_iter_based=True),
VVsssssk's avatar
VVsssssk committed
98
    dict(
99
        type='CosineAnnealingMomentum',
100
        T_max=epoch_num * 0.6,
VVsssssk's avatar
VVsssssk committed
101
        eta_min=1,
102
103
104
        begin=epoch_num * 0.4,
        end=epoch_num * 1,
        convert_to_iter_based=True)
VVsssssk's avatar
VVsssssk committed
105
]
zhangwenwei's avatar
zhangwenwei committed
106
107
108
109
110
111
# max_norm=35 is slightly better than 10 for PointPillars in the earlier
# development of the codebase thus we keep the setting. But we does not
# specifically tune this parameter.
# PointPillars usually need longer schedule than second, we simply double
# the training schedule. Do remind that since we use RepeatDataset and
# repeat factor is 2, so we actually train 160 epochs.
112
113
train_cfg = dict(by_epoch=True, max_epochs=epoch_num, val_interval=2)
val_cfg = dict()
VVsssssk's avatar
VVsssssk committed
114
test_cfg = dict()