PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py 4.76 KB
Newer Older
1
_base_ = './PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py'
zhangwenwei's avatar
zhangwenwei committed
2

wuyuefeng's avatar
wuyuefeng committed
3
4
5
6
7
point_cloud_range = [0, -40, -3, 70.4, 40, 1]  # velodyne coordinates, x, y, z

model = dict(
    rpn_head=dict(
        type='PartA2RPNHead',
zhangwenwei's avatar
zhangwenwei committed
8
        num_classes=1,
wuyuefeng's avatar
wuyuefeng committed
9
        anchor_generator=dict(
zhangwenwei's avatar
zhangwenwei committed
10
            _delete_=True,
wuyuefeng's avatar
wuyuefeng committed
11
            type='Anchor3DRangeGenerator',
wuyuefeng's avatar
wuyuefeng committed
12
            ranges=[[0, -40.0, -1.78, 70.4, 40.0, -1.78]],
13
            sizes=[[3.9, 1.6, 1.56]],
wuyuefeng's avatar
wuyuefeng committed
14
            rotations=[0, 1.57],
zhangwenwei's avatar
zhangwenwei committed
15
            reshape_out=False)),
wuyuefeng's avatar
wuyuefeng committed
16
17
    roi_head=dict(
        num_classes=1,
zhangwenwei's avatar
zhangwenwei committed
18
        semantic_head=dict(num_classes=1),
19
20
21
22
23
24
        bbox_head=dict(num_classes=1)),
    # model training and testing settings
    train_cfg=dict(
        _delete_=True,
        rpn=dict(
            assigner=dict(
25
                type='Max3DIoUAssigner',
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
                iou_calculator=dict(type='BboxOverlapsNearest3D'),
                pos_iou_thr=0.6,
                neg_iou_thr=0.45,
                min_pos_iou=0.45,
                ignore_iof_thr=-1),
            allowed_border=0,
            pos_weight=-1,
            debug=False),
        rpn_proposal=dict(
            nms_pre=9000,
            nms_post=512,
            max_num=512,
            nms_thr=0.8,
            score_thr=0,
            use_rotate_nms=False),
        rcnn=dict(
            assigner=dict(  # for Car
43
                type='Max3DIoUAssigner',
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
                iou_calculator=dict(type='BboxOverlaps3D', coordinate='lidar'),
                pos_iou_thr=0.55,
                neg_iou_thr=0.55,
                min_pos_iou=0.55,
                ignore_iof_thr=-1),
            sampler=dict(
                type='IoUNegPiecewiseSampler',
                num=128,
                pos_fraction=0.55,
                neg_piece_fractions=[0.8, 0.2],
                neg_iou_piece_thrs=[0.55, 0.1],
                neg_pos_ub=-1,
                add_gt_as_proposals=False,
                return_iou=True),
            cls_pos_thr=0.75,
            cls_neg_thr=0.25)),
    test_cfg=dict(
        rpn=dict(
            nms_pre=1024,
            nms_post=100,
            max_num=100,
            nms_thr=0.7,
            score_thr=0,
            use_rotate_nms=True),
        rcnn=dict(
            use_rotate_nms=True,
            use_raw_score=True,
            nms_thr=0.01,
            score_thr=0.1)))
wuyuefeng's avatar
wuyuefeng committed
73
74
75
76

# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
wuyuefeng's avatar
wuyuefeng committed
77
class_names = ['Car']
78
input_modality = dict(use_lidar=True, use_camera=False)
wuyuefeng's avatar
wuyuefeng committed
79
db_sampler = dict(
zhangwenwei's avatar
zhangwenwei committed
80
    data_root=data_root,
wuyuefeng's avatar
wuyuefeng committed
81
82
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
83
    prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)),
zhangwenwei's avatar
zhangwenwei committed
84
    classes=class_names,
85
86
87
    sample_groups=dict(Car=15),
    points_loader=dict(
        type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4))
wuyuefeng's avatar
wuyuefeng committed
88
train_pipeline = [
89
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
zhangwenwei's avatar
zhangwenwei committed
90
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
wuyuefeng's avatar
wuyuefeng committed
91
92
93
94
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='ObjectNoise',
        num_try=100,
zhangwenwei's avatar
zhangwenwei committed
95
        translation_std=[1.0, 1.0, 0.5],
wuyuefeng's avatar
wuyuefeng committed
96
        global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
97
        rot_range=[-0.78539816, 0.78539816]),
wuyuefeng's avatar
wuyuefeng committed
98
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
wuyuefeng's avatar
wuyuefeng committed
99
    dict(
zhangwenwei's avatar
zhangwenwei committed
100
101
102
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
wuyuefeng's avatar
wuyuefeng committed
103
104
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
zhangwenwei's avatar
zhangwenwei committed
105
    dict(type='ObjectNameFilter', classes=class_names),
wuyuefeng's avatar
wuyuefeng committed
106
    dict(type='PointShuffle'),
107
108
109
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
wuyuefeng's avatar
wuyuefeng committed
110
111
]
test_pipeline = [
112
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
wuyuefeng's avatar
wuyuefeng committed
113
    dict(
zhangwenwei's avatar
zhangwenwei committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
wuyuefeng's avatar
wuyuefeng committed
133
134
]

135
136
137
138
139
140
141
train_dataloader = dict(
    dataset=dict(
        dataset=dict(
            pipeline=train_pipeline, metainfo=dict(CLASSES=class_names))))
test_dataloader = dict(
    dataset=dict(pipeline=test_pipeline, metainfo=dict(CLASSES=class_names)))
val_dataloader = dict(dataset=dict(metainfo=dict(CLASSES=class_names)))
wuyuefeng's avatar
wuyuefeng committed
142
find_unused_parameters = True