htc_r50_fpn_head-without-semantic_1x_nuim.py 7.58 KB
Newer Older
1
_base_ = [
2
3
    '../_base_/datasets/nuim-instance.py',
    '../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py'
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
]
# model settings
model = dict(
    type='HybridTaskCascade',
    pretrained='torchvision://resnet50',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=True,
        style='pytorch'),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_generator=dict(
            type='AnchorGenerator',
            scales=[8],
            ratios=[0.5, 1.0, 2.0],
            strides=[4, 8, 16, 32, 64]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[1.0, 1.0, 1.0, 1.0]),
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
    roi_head=dict(
        type='HybridTaskCascadeRoIHead',
        interleaved=True,
        mask_info_flow=True,
        num_stages=3,
        stage_loss_weights=[1, 0.5, 0.25],
        bbox_roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]),
        bbox_head=[
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                num_classes=10,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.1, 0.1, 0.2, 0.2]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
                               loss_weight=1.0)),
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                num_classes=10,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.05, 0.05, 0.1, 0.1]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
                               loss_weight=1.0)),
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                num_classes=10,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.033, 0.033, 0.067, 0.067]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
        ],
        mask_roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]),
        mask_head=[
            dict(
                type='HTCMaskHead',
                with_conv_res=False,
                num_convs=4,
                in_channels=256,
                conv_out_channels=256,
                num_classes=10,
                loss_mask=dict(
                    type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
            dict(
                type='HTCMaskHead',
                num_convs=4,
                in_channels=256,
                conv_out_channels=256,
                num_classes=10,
                loss_mask=dict(
                    type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
            dict(
                type='HTCMaskHead',
                num_convs=4,
                in_channels=256,
                conv_out_channels=256,
                num_classes=10,
                loss_mask=dict(
                    type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))
133
134
135
136
        ]),
    # model training and testing settings
    train_cfg=dict(
        rpn=dict(
137
138
139
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.7,
140
141
                neg_iou_thr=0.3,
                min_pos_iou=0.3,
142
143
144
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
145
146
                num=256,
                pos_fraction=0.5,
147
                neg_pos_ub=-1,
148
149
                add_gt_as_proposals=False),
            allowed_border=0,
150
            pos_weight=-1,
151
152
153
154
155
            debug=False),
        rpn_proposal=dict(
            nms_across_levels=False,
            nms_pre=2000,
            nms_post=2000,
156
157
            max_per_img=2000,
            nms=dict(type='nms', iou_threshold=0.7),
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
            min_bbox_size=0),
        rcnn=[
            dict(
                assigner=dict(
                    type='MaxIoUAssigner',
                    pos_iou_thr=0.5,
                    neg_iou_thr=0.5,
                    min_pos_iou=0.5,
                    ignore_iof_thr=-1),
                sampler=dict(
                    type='RandomSampler',
                    num=512,
                    pos_fraction=0.25,
                    neg_pos_ub=-1,
                    add_gt_as_proposals=True),
                mask_size=28,
                pos_weight=-1,
                debug=False),
            dict(
                assigner=dict(
                    type='MaxIoUAssigner',
                    pos_iou_thr=0.6,
                    neg_iou_thr=0.6,
                    min_pos_iou=0.6,
                    ignore_iof_thr=-1),
                sampler=dict(
                    type='RandomSampler',
                    num=512,
                    pos_fraction=0.25,
                    neg_pos_ub=-1,
                    add_gt_as_proposals=True),
                mask_size=28,
                pos_weight=-1,
                debug=False),
            dict(
                assigner=dict(
                    type='MaxIoUAssigner',
                    pos_iou_thr=0.7,
                    neg_iou_thr=0.7,
                    min_pos_iou=0.7,
                    ignore_iof_thr=-1),
                sampler=dict(
                    type='RandomSampler',
                    num=512,
                    pos_fraction=0.25,
                    neg_pos_ub=-1,
                    add_gt_as_proposals=True),
                mask_size=28,
                pos_weight=-1,
                debug=False)
        ]),
    test_cfg=dict(
        rpn=dict(
            nms_across_levels=False,
            nms_pre=1000,
            nms_post=1000,
214
215
            max_per_img=1000,
            nms=dict(type='nms', iou_threshold=0.7),
216
217
218
219
220
221
            min_bbox_size=0),
        rcnn=dict(
            score_thr=0.001,
            nms=dict(type='nms', iou_threshold=0.5),
            max_per_img=100,
            mask_thr_binary=0.5)))