centerpoint_pillar02_second_secfpn_8xb4-cyclic-20e_nus-3d.py 4.54 KB
Newer Older
1
2
_base_ = [
    '../_base_/datasets/nus-3d.py',
3
4
    '../_base_/models/centerpoint_pillar02_second_secfpn_nus.py',
    '../_base_/schedules/cyclic-20e.py', '../_base_/default_runtime.py'
5
6
7
8
9
10
11
12
13
14
]

# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
# For nuScenes we usually do 10-class detection
class_names = [
    'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
    'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]
VVsssssk's avatar
VVsssssk committed
15
data_prefix = dict(pts='samples/LIDAR_TOP', img='', sweeps='sweeps/LIDAR_TOP')
16
model = dict(
17
18
    data_preprocessor=dict(
        voxel_layer=dict(point_cloud_range=point_cloud_range)),
19
    pts_voxel_encoder=dict(point_cloud_range=point_cloud_range),
20
21
22
23
    pts_bbox_head=dict(bbox_coder=dict(pc_range=point_cloud_range[:2])),
    # model training and testing settings
    train_cfg=dict(pts=dict(point_cloud_range=point_cloud_range)),
    test_cfg=dict(pts=dict(pc_range=point_cloud_range[:2])))
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
file_client_args = dict(backend='disk')

db_sampler = dict(
    data_root=data_root,
    info_path=data_root + 'nuscenes_dbinfos_train.pkl',
    rate=1.0,
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(
            car=5,
            truck=5,
            bus=5,
            trailer=5,
            construction_vehicle=5,
            traffic_cone=5,
            barrier=5,
            motorcycle=5,
            bicycle=5,
            pedestrian=5)),
    classes=class_names,
    sample_groups=dict(
        car=2,
        truck=3,
        construction_vehicle=7,
        bus=4,
        trailer=6,
        barrier=2,
        motorcycle=6,
        bicycle=6,
        pedestrian=2,
        traffic_cone=2),
    points_loader=dict(
        type='LoadPointsFromFile',
60
        coord_type='LIDAR',
61
        load_dim=5,
62
        use_dim=[0, 1, 2, 3, 4]))
63
64

train_pipeline = [
65
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5),
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=9,
        use_dim=[0, 1, 2, 3, 4],
        pad_empty_sweeps=True,
        remove_close=True),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
        flip_ratio_bev_vertical=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='PointShuffle'),
jshilong's avatar
jshilong committed
88
89
90
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
91
92
]
test_pipeline = [
93
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5),
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=9,
        use_dim=[0, 1, 2, 3, 4],
        pad_empty_sweeps=True,
        remove_close=True),
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
jshilong's avatar
jshilong committed
111
112
113
            dict(type='RandomFlip3D')
        ]),
    dict(type='Pack3DDetInputs', keys=['points'])
114
]
115

jshilong's avatar
jshilong committed
116
117
118
119
120
121
122
train_dataloader = dict(
    _delete_=True,
    batch_size=4,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
123
124
125
126
        type='CBGSDataset',
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
jshilong's avatar
jshilong committed
127
            ann_file='nuscenes_infos_train.pkl',
128
            pipeline=train_pipeline,
jshilong's avatar
jshilong committed
129
            metainfo=dict(CLASSES=class_names),
130
            test_mode=False,
jshilong's avatar
jshilong committed
131
            data_prefix=data_prefix,
132
133
134
            use_valid_flag=True,
            # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
            # and box_type_3d='Depth' in sunrgbd and scannet dataset.
jshilong's avatar
jshilong committed
135
136
137
138
139
            box_type_3d='LiDAR')))
test_dataloader = dict(
    dataset=dict(pipeline=test_pipeline, metainfo=dict(CLASSES=class_names)))
val_dataloader = dict(
    dataset=dict(pipeline=test_pipeline, metainfo=dict(CLASSES=class_names)))
140

jshilong's avatar
jshilong committed
141
train_cfg = dict(val_interval=20)