cyclic-20e.py 1.37 KB
Newer Older
1
2
3
4
5
# For nuScenes dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation
# interval to be 20. Please change the interval accordingly if you do not
# use a default schedule.
# optimizer
jshilong's avatar
jshilong committed
6
lr = 1e-4
7
8
# This schedule is mainly used by models on nuScenes dataset
# max_norm=10 is better for SECOND
jshilong's avatar
jshilong committed
9
10
11
12
13
14
15
16
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='AdamW', lr=lr, weight_decay=0.01),
    clip_grad=dict(max_norm=35, norm_type=2))
# learning rate
param_scheduler = [
    dict(
        type='CosineAnnealingLR',
17
        T_max=8,
jshilong's avatar
jshilong committed
18
19
        eta_min=lr * 10,
        begin=0,
20
21
22
        end=8,
        by_epoch=True,
        convert_to_iter_based=True),
jshilong's avatar
jshilong committed
23
24
    dict(
        type='CosineAnnealingLR',
25
        T_max=12,
jshilong's avatar
jshilong committed
26
        eta_min=lr * 1e-4,
27
28
29
30
        begin=8,
        end=20,
        by_epoch=True,
        convert_to_iter_based=True),
jshilong's avatar
jshilong committed
31
    dict(
32
        type='CosineAnnealingMomentum',
33
        T_max=8,
jshilong's avatar
jshilong committed
34
35
        eta_min=0.85 / 0.95,
        begin=0,
36
37
38
        end=8,
        by_epoch=True,
        convert_to_iter_based=True),
jshilong's avatar
jshilong committed
39
    dict(
40
        type='CosineAnnealingMomentum',
41
        T_max=12,
jshilong's avatar
jshilong committed
42
        eta_min=1,
43
44
45
46
        begin=8,
        end=20,
        by_epoch=True,
        convert_to_iter_based=True)
jshilong's avatar
jshilong committed
47
]
48
49

# runtime settings
50
train_cfg = dict(by_epoch=True, max_epochs=20, val_interval=20)
51
val_cfg = dict()
jshilong's avatar
jshilong committed
52
test_cfg = dict()