lyft-3d-range100.py 4.07 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-100, -100, -5, 100, 100, 3]
# For Lyft we usually do 9-class detection
class_names = [
    'car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle', 'motorcycle',
    'bicycle', 'pedestrian', 'animal'
]
dataset_type = 'LyftDataset'
data_root = 'data/lyft/'
# Input modality for Lyft dataset, this is consistent with the submission
# format which requires the information in input_modality.
input_modality = dict(
    use_lidar=True,
    use_camera=False,
    use_radar=False,
    use_map=False,
    use_external=False)
file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# file_client_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/lyft/': 's3://lyft/lyft/',
#         'data/lyft/': 's3://lyft/lyft/'
#    }))
train_pipeline = [
30
31
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5),
    dict(type='LoadPointsFromMultiSweeps', sweeps_num=10),
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
46
47
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5),
    dict(type='LoadPointsFromMultiSweeps', sweeps_num=10),
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
]
69
70
71
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
72
73
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5),
    dict(type='LoadPointsFromMultiSweeps', sweeps_num=10),
74
75
76
77
78
79
    dict(
        type='DefaultFormatBundle3D',
        class_names=class_names,
        with_label=False),
    dict(type='Collect3D', keys=['points'])
]
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'lyft_infos_train.pkl',
        pipeline=train_pipeline,
        classes=class_names,
        modality=input_modality,
        test_mode=False),
    val=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'lyft_infos_val.pkl',
        pipeline=test_pipeline,
        classes=class_names,
        modality=input_modality,
        test_mode=True),
    test=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'lyft_infos_test.pkl',
        pipeline=test_pipeline,
        classes=class_names,
        modality=input_modality,
        test_mode=True))
# For Lyft dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation
# interval to be 24. Please change the interval accordingly if you do not
# use a default schedule.
112
evaluation = dict(interval=24, pipeline=eval_pipeline)