"vscode:/vscode.git/clone" did not exist on "5907abd8b018f8ff71755f824b16ad0fbd6f8161"
nus-mono3d.py 2.81 KB
Newer Older
twang's avatar
twang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
dataset_type = 'NuScenesMonoDataset'
data_root = 'data/nuscenes/'
class_names = [
    'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
    'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
# Input modality for nuScenes dataset, this is consistent with the submission
# format which requires the information in input_modality.
input_modality = dict(
    use_lidar=False,
    use_camera=True,
    use_radar=False,
    use_map=False,
    use_external=False)
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFileMono3D'),
    dict(
        type='LoadAnnotations3D',
        with_bbox=True,
        with_label=True,
        with_attr_label=True,
        with_bbox_3d=True,
        with_label_3d=True,
        with_bbox_depth=True),
    dict(type='Resize', img_scale=(1600, 900), keep_ratio=True),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(
        type='Collect3D',
        keys=[
            'img', 'gt_bboxes', 'gt_labels', 'attr_labels', 'gt_bboxes_3d',
            'gt_labels_3d', 'centers2d', 'depths'
        ]),
]
test_pipeline = [
    dict(type='LoadImageFromFileMono3D'),
    dict(
        type='MultiScaleFlipAug',
        scale_factor=1.0,
        flip=False,
        transforms=[
            dict(type='RandomFlip3D'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['img']),
        ])
]
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'nuscenes_infos_train_mono3d.coco.json',
        img_prefix=data_root,
        classes=class_names,
        pipeline=train_pipeline,
        modality=input_modality,
        test_mode=False,
        box_type_3d='Camera'),
    val=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'nuscenes_infos_val_mono3d.coco.json',
        img_prefix=data_root,
        classes=class_names,
        pipeline=test_pipeline,
        modality=input_modality,
        test_mode=True,
        box_type_3d='Camera'),
    test=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'nuscenes_infos_val_mono3d.coco.json',
        img_prefix=data_root,
        classes=class_names,
        pipeline=test_pipeline,
        modality=input_modality,
        test_mode=True,
        box_type_3d='Camera'))
evaluation = dict(interval=2)