README.md 9.22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks

> [4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks](https://arxiv.org/abs/1904.08755)

<!-- [ALGORITHM] -->

## Abstract

In many robotics and VR/AR applications, 3D-videos are readily-available sources of input (a continuous sequence of depth images, or LIDAR scans). However, those 3D-videos are processed frame-by-frame either through 2D convnets or 3D perception algorithms. In this work, we propose 4-dimensional convolutional neural networks for spatio-temporal perception that can directly process such 3D-videos using high-dimensional convolutions. For this, we adopt sparse tensors and propose the generalized sparse convolution that encompasses all discrete convolutions. To implement the generalized sparse convolution, we create an open-source auto-differentiation library for sparse tensors that provides extensive functions for high-dimensional convolutional neural networks. We create 4D spatio-temporal convolutional neural networks using the library and validate them on various 3D semantic segmentation benchmarks and proposed 4D datasets for 3D-video perception. To overcome challenges in the 4D space, we propose the hybrid kernel, a special case of the generalized sparse convolution, and the trilateral-stationary conditional random field that enforces spatio-temporal consistency in the 7D space-time-chroma space. Experimentally, we show that convolutional neural networks with only generalized 3D sparse convolutions can outperform 2D or 2D-3D hybrid methods by a large margin. Also, we show that on 3D-videos, 4D spatio-temporal convolutional neural networks are robust to noise, outperform 3D convolutional neural networks and are faster than the 3D counterpart in some cases.

<div align=center>
<img src="https://user-images.githubusercontent.com/72679458/225243534-cd0ed738-4224-4e7c-bcac-4f4c8d89f3a9.png" width="800"/>
</div>

## Introduction

17
We implement MinkUNet with [TorchSparse](https://github.com/mit-han-lab/torchsparse) / [Minkowski Engine](https://github.com/NVIDIA/MinkowskiEngine) / [Spconv](https://github.com/traveller59/spconv) backend and provide the result and checkpoints on SemanticKITTI datasets.
18
19
20
21
22

## Results and models

### SemanticKITTI

23
24
25
26
27
28
29
|                                            Method                                             |     Backend      | Lr schd | Amp | Laser-Polar Mix | Mem (GB) | Training Time (hours) |  FPS   | mIoU |                                                                                                                                                                          Download                                                                                                                                                                           |
| :-------------------------------------------------------------------------------------------: | :--------------: | :-----: | :-: | :-------------: | :------: | :-------------------: | :----: | :--: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|         [MinkUNet18-W16](./minkunet18_w16_torchsparse_8xb2-amp-15e_semantickitti.py)          |   torchsparse    |   15e   |  ✔  |        ✗        |   3.4    |           -           |   -    | 60.3 | [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet_w16_8xb2-15e_semantickitti/minkunet_w16_8xb2-15e_semantickitti_20230309_160737-0d8ec25b.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet_w16_8xb2-15e_semantickitti/minkunet_w16_8xb2-15e_semantickitti_20230309_160737.log) |
|         [MinkUNet18-W20](./minkunet18_w20_torchsparse_8xb2-amp-15e_semantickitti.py)          |   torchsparse    |   15e   |  ✔  |        ✗        |   3.7    |           -           |   -    | 61.6 | [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet_w20_8xb2-15e_semantickitti/minkunet_w20_8xb2-15e_semantickitti_20230309_160718-c3b92e6e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet_w20_8xb2-15e_semantickitti/minkunet_w20_8xb2-15e_semantickitti_20230309_160718.log) |
|         [MinkUNet18-W32](./minkunet18_w32_torchsparse_8xb2-amp-15e_semantickitti.py)          |   torchsparse    |   15e   |  ✔  |        ✗        |   4.9    |           -           |   -    | 63.1 | [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet_w32_8xb2-15e_semantickitti/minkunet_w32_8xb2-15e_semantickitti_20230309_160710-7fa0a6f1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet_w32_8xb2-15e_semantickitti/minkunet_w32_8xb2-15e_semantickitti_20230309_160710.log) |
|     [MinkUNet34-W32](./minkunet34_w32_minkowski_8xb2-laser-polar-mix-3x_semantickitti.py)     | minkowski engine |   3x    |  ✗  |        ✔        |   11.5   |          6.5          |  12.2  | 69.2 |          [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet34_w32_minkowski_8xb2-laser-polar-mix-3x_semantickitti_20230514_202236-839847a8.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet34_w32_minkowski_8xb2-laser-polar-mix-3x_semantickitti_20230514_202236.log)          |
|    [MinkUNet34-W32](./minkunet34_w32_spconv_8xb2-amp-laser-polar-mix-3x_semantickitti.py)     |      spconv      |   3x    |  ✔  |        ✔        |   6.7    |           2           | 14.6\* | 68.3 |         [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet34_w32_spconv_8xb2-amp-laser-polar-mix-3x_semantickitti_20230512_233152-e0698a0f.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet34_w32_spconv_8xb2-amp-laser-polar-mix-3x_semantickitti_20230512_233152.log)         |
30
|      [MinkUNet34-W32](./minkunet34_w32_spconv_8xb2-laser-polar-mix-3x_semantickitti.py)       |      spconv      |   3x    |  ✗  |        ✔        |   10.5   |           6           |  14.5  | 69.3 |             [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet34_w32_spconv_8xb2-laser-polar-mix-3x_semantickitti_20230512_233817-72b200d8.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet34_w32_spconv_8xb2-laser-polar-mix-3x_semantickitti_20230512_233817.log)             |
31
32
33
|  [MinkUNet34-W32](./minkunet34_w32_torchsparse_8xb2-amp-laser-polar-mix-3x_semantickitti.py)  |   torchsparse    |   3x    |  ✔  |        ✔        |   6.6    |           3           |  12.8  | 69.3 |    [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet34_w32_torchsparse_8xb2-amp-laser-polar-mix-3x_semantickitti_20230512_233511-bef6cad0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet34_w32_torchsparse_8xb2-amp-laser-polar-mix-3x_semantickitti_20230512_233511.log)    |
|    [MinkUNet34-W32](./minkunet34_w32_torchsparse_8xb2-laser-polar-mix-3x_semantickitti.py)    |   torchsparse    |   3x    |  ✗  |        ✔        |   11.8   |          5.5          |  15.9  | 68.7 |        [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet34_w32_torchsparse_8xb2-laser-polar-mix-3x_semantickitti_20230512_233601-2b61b0ab.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet34_w32_torchsparse_8xb2-laser-polar-mix-3x_semantickitti_20230512_233601.log)        |
| [MinkUNet34v2-W32](minkunet34v2_w32_torchsparse_8xb2-amp-laser-polar-mix-3x_semantickitti.py) |   torchsparse    |   3x    |  ✔  |        ✔        |   8.9    |           -           |   -    | 70.3 |  [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet34v2_w32_torchsparse_8xb2-amp-laser-polar-mix-3x_semantickitti_20230510_221853-b14a68b3.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/minkunet/minkunet34v2_w32_torchsparse_8xb2-amp-laser-polar-mix-3x_semantickitti_20230510_221853.log)  |
34
35
36
37
38

**Note:** We follow the implementation in SPVNAS original [repo](https://github.com/mit-han-lab/spvnas) and W16\\W20\\W32 indicates different number of channels.

**Note:** Due to TorchSparse backend, the model performance is unstable with TorchSparse backend and may fluctuate by about 1.5 mIoU for different random seeds.

39
40
41
42
**Note:** Referring to [PCSeg](https://github.com/PJLab-ADG/PCSeg), MinkUNet34v2 is modified based on MinkUNet34.

**Note\*:** Training Time and FPS are measured on NVIDIA A100. The versions of Torchsparse, Minkowski Engine and Spconv are 0.5.4, 1.4.0 and 2.3.6 respectively. Since spconv 2.3.6 has a bug with fp16 on in the inference stage, the actual FPS measurement using fp32.

43
44
45
46
47
48
49
50
51
52
53
## Citation

```latex
@inproceedings{choy20194d,
  title={4d spatio-temporal convnets: Minkowski convolutional neural networks},
  author={Choy, Christopher and Gwak, JunYoung and Savarese, Silvio},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  pages={3075--3084},
  year={2019}
}
```