test_loading.py 3.38 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
# Copyright (c) OpenMMLab. All rights reserved.
import unittest

4
import numpy as np
jshilong's avatar
jshilong committed
5
6
7
8
9
import torch
from mmengine.testing import assert_allclose
from utils import create_dummy_data_info

from mmdet3d.core import DepthPoints, LiDARPoints
10
from mmdet3d.datasets.pipelines import PointSegClassMapping
jshilong's avatar
jshilong committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from mmdet3d.datasets.pipelines.loading import (LoadAnnotations3D,
                                                LoadPointsFromFile)


class TestLoadPointsFromFile(unittest.TestCase):

    def test_load_points_from_file(self):
        use_dim = 3
        file_client_args = dict(backend='disk')
        load_points_transform = LoadPointsFromFile(
            coord_type='LIDAR',
            load_dim=4,
            use_dim=use_dim,
            file_client_args=file_client_args)
        data_info = create_dummy_data_info()
        info = load_points_transform(data_info)
        self.assertIn('points', info)
        self.assertIsInstance(info['points'], LiDARPoints)
        load_points_transform = LoadPointsFromFile(
            coord_type='DEPTH',
            load_dim=4,
            use_dim=use_dim,
            file_client_args=file_client_args)
        info = load_points_transform(data_info)
        self.assertIsInstance(info['points'], DepthPoints)
        self.assertEqual(info['points'].shape[-1], use_dim)
        load_points_transform = LoadPointsFromFile(
            coord_type='DEPTH',
            load_dim=4,
            use_dim=use_dim,
            shift_height=True,
            file_client_args=file_client_args)
        info = load_points_transform(data_info)
        # extra height dim
        self.assertEqual(info['points'].shape[-1], use_dim + 1)

        repr_str = repr(load_points_transform)
        self.assertIn('shift_height=True', repr_str)
        self.assertIn('use_color=False', repr_str)
        self.assertIn('load_dim=4', repr_str)


class TestLoadAnnotations3D(unittest.TestCase):

    def test_load_points_from_file(self):
        file_client_args = dict(backend='disk')

        load_anns_transform = LoadAnnotations3D(
            with_bbox_3d=True,
            with_label_3d=True,
            file_client_args=file_client_args)
        self.assertIs(load_anns_transform.with_seg, False)
        self.assertIs(load_anns_transform.with_bbox_3d, True)
        self.assertIs(load_anns_transform.with_label_3d, True)
        data_info = create_dummy_data_info()
        info = load_anns_transform(data_info)
        self.assertIn('gt_bboxes_3d', info)
        assert_allclose(info['gt_bboxes_3d'].tensor.sum(),
                        torch.tensor(7.2650))
        self.assertIn('gt_labels_3d', info)
        assert_allclose(info['gt_labels_3d'], torch.tensor([1]))
        repr_str = repr(load_anns_transform)
        self.assertIn('with_bbox_3d=True', repr_str)
        self.assertIn('with_label_3d=True', repr_str)
        self.assertIn('with_bbox_depth=False', repr_str)
76
77
78
79
80
81
82
83
84
85
86
87
88
89


class TestPointSegClassMapping(unittest.TestCase):

    def test_point_seg_class_mapping(self):
        results = dict()
        results['pts_semantic_mask'] = np.array([1, 2, 3, 4, 5])

        point_seg_mapping_transform = PointSegClassMapping(
            valid_cat_ids=[1, 2, 3],
            max_cat_id=results['pts_semantic_mask'].max())
        results = point_seg_mapping_transform(results)
        assert_allclose(results['pts_semantic_mask'], np.array([0, 1, 2, 3,
                                                                3]))