sunrgbd_utils.py 7.9 KB
Newer Older
yinchimaoliang's avatar
yinchimaoliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
''' Provides Python helper function to read My SUNRGBD dataset.

Author: Charles R. Qi
Date: October, 2017

Updated by Charles R. Qi
Date: December, 2018
Note: removed basis loading.
'''

import cv2
import numpy as np
import scipy.io as sio

type2class = {
    'bed': 0,
    'table': 1,
    'sofa': 2,
    'chair': 3,
    'toilet': 4,
    'desk': 5,
    'dresser': 6,
    'night_stand': 7,
    'bookshelf': 8,
    'bathtub': 9
}
class2type = {type2class[t]: t for t in type2class}


def flip_axis_to_camera(pc):
35
36
37
38
39
40
41
42
43
44
    """Flip axis to camera.

    Flip X-right,Y-forward,Z-up to X-right,Y-down,Z-forward.

    Args:
        pc(ndarray): points in depth axis.

    Return:
        ndarray: points in camera  axis.
    """
yinchimaoliang's avatar
yinchimaoliang committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    pc2 = np.copy(pc)
    pc2[:, [0, 1, 2]] = pc2[:, [0, 2, 1]]  # cam X,Y,Z = depth X,-Z,Y
    pc2[:, 1] *= -1
    return pc2


def flip_axis_to_depth(pc):
    pc2 = np.copy(pc)
    pc2[:, [0, 1, 2]] = pc2[:, [0, 2, 1]]  # depth X,Y,Z = cam X,Z,-Y
    pc2[:, 2] *= -1
    return pc2


class SUNObject3d(object):

    def __init__(self, line):
        data = line.split(' ')
        data[1:] = [float(x) for x in data[1:]]
        self.classname = data[0]
        self.xmin = data[1]
        self.ymin = data[2]
        self.xmax = data[1] + data[3]
        self.ymax = data[2] + data[4]
        self.box2d = np.array([self.xmin, self.ymin, self.xmax, self.ymax])
        self.centroid = np.array([data[5], data[6], data[7]])
        self.unused_dimension = np.array([data[8], data[9], data[10]])
        self.width = data[8]
        self.length = data[9]
        self.height = data[10]
        self.orientation = np.zeros((3, ))
        self.orientation[0] = data[11]
        self.orientation[1] = data[12]
        self.heading_angle = -1 * np.arctan2(self.orientation[1],
                                             self.orientation[0])


class SUNRGBD_Calibration(object):
    ''' Calibration matrices and utils
        We define five coordinate system in SUN RGBD dataset

        camera coodinate:
            Z is forward, Y is downward, X is rightward

        depth coordinate:
            Just change axis order and flip up-down axis from camera coord

        upright depth coordinate: tilted depth coordinate by Rtilt such that
            Z is gravity direction, Z is up-axis, Y is forward, X is right-ward

        upright camera coordinate:
            Just change axis order and flip up-down axis from upright
                depth coordinate

        image coordinate:
            ----> x-axis (u)
           |
           v
            y-axis (v)

        depth points are stored in upright depth coordinate.
        labels for 3d box (basis, centroid, size) are in upright
            depth coordinate.
        2d boxes are in image coordinate

        We generate frustum point cloud and 3d box in upright camera coordinate
    '''

    def __init__(self, calib_filepath):
        lines = [line.rstrip() for line in open(calib_filepath)]
        Rtilt = np.array([float(x) for x in lines[0].split(' ')])
        self.Rtilt = np.reshape(Rtilt, (3, 3), order='F')
        K = np.array([float(x) for x in lines[1].split(' ')])
        self.K = np.reshape(K, (3, 3), order='F')
        self.f_u = self.K[0, 0]
        self.f_v = self.K[1, 1]
        self.c_u = self.K[0, 2]
        self.c_v = self.K[1, 2]

    def project_upright_depth_to_camera(self, pc):
        ''' project point cloud from depth coord to camera coordinate
            Input: (N,3) Output: (N,3)
        '''
        # Project upright depth to depth coordinate
        pc2 = np.dot(np.transpose(self.Rtilt), np.transpose(pc[:,
                                                               0:3]))  # (3,n)
        return flip_axis_to_camera(np.transpose(pc2))

    def project_upright_depth_to_image(self, pc):
        ''' Input: (N,3) Output: (N,2) UV and (N,) depth '''
        pc2 = self.project_upright_depth_to_camera(pc)
        uv = np.dot(pc2, np.transpose(self.K))  # (n,3)
        uv[:, 0] /= uv[:, 2]
        uv[:, 1] /= uv[:, 2]
        return uv[:, 0:2], pc2[:, 2]

    def project_upright_depth_to_upright_camera(self, pc):
        return flip_axis_to_camera(pc)

    def project_upright_camera_to_upright_depth(self, pc):
        return flip_axis_to_depth(pc)

    def project_image_to_camera(self, uv_depth):
        n = uv_depth.shape[0]
        x = ((uv_depth[:, 0] - self.c_u) * uv_depth[:, 2]) / self.f_u
        y = ((uv_depth[:, 1] - self.c_v) * uv_depth[:, 2]) / self.f_v
        pts_3d_camera = np.zeros((n, 3))
        pts_3d_camera[:, 0] = x
        pts_3d_camera[:, 1] = y
        pts_3d_camera[:, 2] = uv_depth[:, 2]
        return pts_3d_camera

    def project_image_to_upright_camerea(self, uv_depth):
        pts_3d_camera = self.project_image_to_camera(uv_depth)
        pts_3d_depth = flip_axis_to_depth(pts_3d_camera)
        pts_3d_upright_depth = np.transpose(
            np.dot(self.Rtilt, np.transpose(pts_3d_depth)))
        return self.project_upright_depth_to_upright_camera(
            pts_3d_upright_depth)


def rotz(t):
    """Rotation about the z-axis."""
    c = np.cos(t)
    s = np.sin(t)
    return np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]])


def transform_from_rot_trans(R, t):
    """Transforation matrix from rotation matrix and translation vector."""
    R = R.reshape(3, 3)
    t = t.reshape(3, 1)
    return np.vstack((np.hstack([R, t]), [0, 0, 0, 1]))


def read_sunrgbd_label(label_filename):
    lines = [line.rstrip() for line in open(label_filename)]
    objects = [SUNObject3d(line) for line in lines]
    return objects


def load_image(img_filename):
    return cv2.imread(img_filename)


def load_depth_points(depth_filename):
    depth = np.loadtxt(depth_filename)
    return depth


def load_depth_points_mat(depth_filename):
    depth = sio.loadmat(depth_filename)['instance']
    return depth


def in_hull(p, hull):
    from scipy.spatial import Delaunay
    if not isinstance(hull, Delaunay):
        hull = Delaunay(hull)
    return hull.find_simplex(p) >= 0


def extract_pc_in_box3d(pc, box3d):
    ''' pc: (N,3), box3d: (8,3) '''
    box3d_roi_inds = in_hull(pc[:, 0:3], box3d)
    return pc[box3d_roi_inds, :], box3d_roi_inds


def my_compute_box_3d(center, size, heading_angle):
    R = rotz(-1 * heading_angle)
    l, w, h = size
    x_corners = [-l, l, l, -l, -l, l, l, -l]
    y_corners = [w, w, -w, -w, w, w, -w, -w]
    z_corners = [h, h, h, h, -h, -h, -h, -h]
    corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners]))
    corners_3d[0, :] += center[0]
    corners_3d[1, :] += center[1]
    corners_3d[2, :] += center[2]
    return np.transpose(corners_3d)


def compute_box_3d(obj, calib):
    ''' Takes an object and a projection matrix (P) and projects the 3d
        bounding box into the image plane.
        Returns:
            corners_2d: (8,2) array in image coord.
            corners_3d: (8,3) array in in upright depth coord.
    '''
    center = obj.centroid

    # compute rotational matrix around yaw axis
    R = rotz(-1 * obj.heading_angle)

    # 3d bounding box dimensions
    length = obj.length  # along heading arrow
    width = obj.width  # perpendicular to heading arrow
    height = obj.height

    # rotate and translate 3d bounding box
    x_corners = [
        -length, length, length, -length, -length, length, length, -length
    ]
    y_corners = [width, width, -width, -width, width, width, -width, -width]
    z_corners = [
        height, height, height, height, -height, -height, -height, -height
    ]
    corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners]))
    corners_3d[0, :] += center[0]
    corners_3d[1, :] += center[1]
    corners_3d[2, :] += center[2]

    # project the 3d bounding box into the image plane
    corners_2d, _ = calib.project_upright_depth_to_image(
        np.transpose(corners_3d))
    return corners_2d, np.transpose(corners_3d)