test_roiaware_pool3d.py 4.9 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
3
import pytest
import torch

wuyuefeng's avatar
Votenet  
wuyuefeng committed
4
5
from mmdet3d.ops.roiaware_pool3d import (RoIAwarePool3d, points_in_boxes_batch,
                                         points_in_boxes_cpu,
wuyuefeng's avatar
wuyuefeng committed
6
7
8
9
                                         points_in_boxes_gpu)


def test_RoIAwarePool3d():
wuyuefeng's avatar
wuyuefeng committed
10
11
    # RoIAwarePool3d only support gpu version currently.
    if not torch.cuda.is_available():
wuyuefeng's avatar
wuyuefeng committed
12
13
14
15
16
17
18
19
20
21
22
        pytest.skip('test requires GPU and torch+cuda')
    roiaware_pool3d_max = RoIAwarePool3d(
        out_size=4, max_pts_per_voxel=128, mode='max')
    roiaware_pool3d_avg = RoIAwarePool3d(
        out_size=4, max_pts_per_voxel=128, mode='avg')
    rois = torch.tensor(
        [[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
         [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]],
        dtype=torch.float32).cuda(
        )  # boxes (m, 7) with bottom center in lidar coordinate
    pts = torch.tensor(
wuyuefeng's avatar
wuyuefeng committed
23
24
25
26
        [[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
         [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
         [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9],
         [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]],
wuyuefeng's avatar
wuyuefeng committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        dtype=torch.float32).cuda()  # points (n, 3) in lidar coordinate
    pts_feature = pts.clone()

    pooled_features_max = roiaware_pool3d_max(
        rois=rois, pts=pts, pts_feature=pts_feature)
    assert pooled_features_max.shape == torch.Size([2, 4, 4, 4, 3])
    assert torch.allclose(pooled_features_max.sum(),
                          torch.tensor(51.100).cuda(), 1e-3)

    pooled_features_avg = roiaware_pool3d_avg(
        rois=rois, pts=pts, pts_feature=pts_feature)
    assert pooled_features_avg.shape == torch.Size([2, 4, 4, 4, 3])
    assert torch.allclose(pooled_features_avg.sum(),
                          torch.tensor(49.750).cuda(), 1e-3)


def test_points_in_boxes_gpu():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    boxes = torch.tensor(
        [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3]],
         [[-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]],
        dtype=torch.float32).cuda(
        )  # boxes (b, t, 7) with bottom center in lidar coordinate
    pts = torch.tensor(
        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
          [4.7, 3.5, -12.2]],
         [[3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9], [-21.3, -52, -5],
          [0, 0, 0], [6, 7, 8], [-2, -3, -4], [6, 4, 9]]],
        dtype=torch.float32).cuda()  # points (b, m, 3) in lidar coordinate

    point_indices = points_in_boxes_gpu(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor(
        [[0, 0, 0, 0, 0, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1]],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([2, 8])
    assert (point_indices == expected_point_indices).all()


def test_points_in_boxes_cpu():
    boxes = torch.tensor(
        [[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
         [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]],
        dtype=torch.float32
    )  # boxes (m, 7) with bottom center in lidar coordinate
    pts = torch.tensor(
wuyuefeng's avatar
wuyuefeng committed
74
75
76
77
        [[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
         [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
         [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9],
         [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]],
wuyuefeng's avatar
wuyuefeng committed
78
79
80
81
82
83
84
85
86
        dtype=torch.float32)  # points (n, 3) in lidar coordinate

    point_indices = points_in_boxes_cpu(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor(
        [[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
        dtype=torch.int32)
    assert point_indices.shape == torch.Size([2, 15])
    assert (point_indices == expected_point_indices).all()
wuyuefeng's avatar
Votenet  
wuyuefeng committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112


def test_points_in_boxes_batch():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    boxes = torch.tensor(
        [[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
          [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]],
        dtype=torch.float32).cuda(
        )  # boxes (m, 7) with bottom center in lidar coordinate
    pts = torch.tensor(
        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
          [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [
              -16, -18, 9
          ], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]],
        dtype=torch.float32).cuda()  # points (n, 3) in lidar coordinate

    point_indices = points_in_boxes_batch(points=pts, boxes=boxes)
    expected_point_indices = torch.tensor(
        [[[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0],
          [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([1, 15, 2])
    assert (point_indices == expected_point_indices).all()