roiaware_pool3d.cpp 5.81 KB
Newer Older
1
2
3
4
5
// Modified from
// https://github.com/sshaoshuai/PCDet/blob/master/pcdet/ops/roiaware_pool3d/src/roiaware_pool3d_kernel.cu
// RoI-aware point cloud feature pooling
// Written by Shaoshuai Shi
// All Rights Reserved 2019.
wuyuefeng's avatar
wuyuefeng committed
6
7

#include <assert.h>
8
9
#include <torch/extension.h>
#include <torch/serialize/tensor.h>
wuyuefeng's avatar
wuyuefeng committed
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#define CHECK_CUDA(x) \
  TORCH_CHECK(x.device().is_cuda(), #x, " must be a CUDAtensor ")
#define CHECK_CONTIGUOUS(x) \
  TORCH_CHECK(x.is_contiguous(), #x, " must be contiguous ")
#define CHECK_INPUT(x) \
  CHECK_CUDA(x);       \
  CHECK_CONTIGUOUS(x)

void roiaware_pool3d_launcher(int boxes_num, int pts_num, int channels,
                              int max_pts_each_voxel, int out_x, int out_y,
                              int out_z, const float *rois, const float *pts,
                              const float *pts_feature, int *argmax,
                              int *pts_idx_of_voxels, float *pooled_features,
                              int pool_method);

void roiaware_pool3d_backward_launcher(int boxes_num, int out_x, int out_y,
                                       int out_z, int channels,
                                       int max_pts_each_voxel,
                                       const int *pts_idx_of_voxels,
                                       const int *argmax, const float *grad_out,
                                       float *grad_in, int pool_method);

int roiaware_pool3d_gpu(at::Tensor rois, at::Tensor pts, at::Tensor pts_feature,
                        at::Tensor argmax, at::Tensor pts_idx_of_voxels,
                        at::Tensor pooled_features, int pool_method);

int roiaware_pool3d_gpu_backward(at::Tensor pts_idx_of_voxels,
                                 at::Tensor argmax, at::Tensor grad_out,
                                 at::Tensor grad_in, int pool_method);

int points_in_boxes_cpu(at::Tensor boxes_tensor, at::Tensor pts_tensor,
                        at::Tensor pts_indices_tensor);

int points_in_boxes_gpu(at::Tensor boxes_tensor, at::Tensor pts_tensor,
                        at::Tensor box_idx_of_points_tensor);

wuyuefeng's avatar
Votenet  
wuyuefeng committed
47
48
49
int points_in_boxes_batch(at::Tensor boxes_tensor, at::Tensor pts_tensor,
                          at::Tensor box_idx_of_points_tensor);

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
int roiaware_pool3d_gpu(at::Tensor rois, at::Tensor pts, at::Tensor pts_feature,
                        at::Tensor argmax, at::Tensor pts_idx_of_voxels,
                        at::Tensor pooled_features, int pool_method) {
  // params rois: (N, 7) [x, y, z, w, l, h, ry] in LiDAR coordinate
  // params pts: (npoints, 3) [x, y, z] in LiDAR coordinate
  // params pts_feature: (npoints, C)
  // params argmax: (N, out_x, out_y, out_z, C)
  // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
  // params pooled_features: (N, out_x, out_y, out_z, C)
  // params pool_method: 0: max_pool 1: avg_pool

  CHECK_INPUT(rois);
  CHECK_INPUT(pts);
  CHECK_INPUT(pts_feature);
  CHECK_INPUT(argmax);
  CHECK_INPUT(pts_idx_of_voxels);
  CHECK_INPUT(pooled_features);

  int boxes_num = rois.size(0);
  int pts_num = pts.size(0);
  int channels = pts_feature.size(1);
  int max_pts_each_voxel = pts_idx_of_voxels.size(4);  // index 0 is the counter
  int out_x = pts_idx_of_voxels.size(1);
  int out_y = pts_idx_of_voxels.size(2);
  int out_z = pts_idx_of_voxels.size(3);
  assert((out_x < 256) && (out_y < 256) &&
         (out_z < 256));  // we encode index with 8bit

  const float *rois_data = rois.data_ptr<float>();
  const float *pts_data = pts.data_ptr<float>();
  const float *pts_feature_data = pts_feature.data_ptr<float>();
  int *argmax_data = argmax.data_ptr<int>();
  int *pts_idx_of_voxels_data = pts_idx_of_voxels.data_ptr<int>();
  float *pooled_features_data = pooled_features.data_ptr<float>();

  roiaware_pool3d_launcher(
      boxes_num, pts_num, channels, max_pts_each_voxel, out_x, out_y, out_z,
      rois_data, pts_data, pts_feature_data, argmax_data,
      pts_idx_of_voxels_data, pooled_features_data, pool_method);

  return 1;
wuyuefeng's avatar
wuyuefeng committed
91
92
}

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
int roiaware_pool3d_gpu_backward(at::Tensor pts_idx_of_voxels,
                                 at::Tensor argmax, at::Tensor grad_out,
                                 at::Tensor grad_in, int pool_method) {
  // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel)
  // params argmax: (N, out_x, out_y, out_z, C)
  // params grad_out: (N, out_x, out_y, out_z, C)
  // params grad_in: (npoints, C), return value
  // params pool_method: 0: max_pool 1: avg_pool

  CHECK_INPUT(pts_idx_of_voxels);
  CHECK_INPUT(argmax);
  CHECK_INPUT(grad_out);
  CHECK_INPUT(grad_in);

  int boxes_num = pts_idx_of_voxels.size(0);
  int out_x = pts_idx_of_voxels.size(1);
  int out_y = pts_idx_of_voxels.size(2);
  int out_z = pts_idx_of_voxels.size(3);
  int max_pts_each_voxel = pts_idx_of_voxels.size(4);  // index 0 is the counter
  int channels = grad_out.size(4);

  const int *pts_idx_of_voxels_data = pts_idx_of_voxels.data_ptr<int>();
  const int *argmax_data = argmax.data_ptr<int>();
  const float *grad_out_data = grad_out.data_ptr<float>();
  float *grad_in_data = grad_in.data_ptr<float>();

  roiaware_pool3d_backward_launcher(boxes_num, out_x, out_y, out_z, channels,
                                    max_pts_each_voxel, pts_idx_of_voxels_data,
                                    argmax_data, grad_out_data, grad_in_data,
                                    pool_method);

  return 1;
wuyuefeng's avatar
wuyuefeng committed
125
126
127
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
128
129
130
131
132
  m.def("forward", &roiaware_pool3d_gpu, "roiaware pool3d forward (CUDA)");
  m.def("backward", &roiaware_pool3d_gpu_backward,
        "roiaware pool3d backward (CUDA)");
  m.def("points_in_boxes_gpu", &points_in_boxes_gpu,
        "points_in_boxes_gpu forward (CUDA)");
wuyuefeng's avatar
Votenet  
wuyuefeng committed
133
134
  m.def("points_in_boxes_batch", &points_in_boxes_batch,
        "points_in_boxes_batch forward (CUDA)");
135
136
  m.def("points_in_boxes_cpu", &points_in_boxes_cpu,
        "points_in_boxes_cpu forward (CPU)");
wuyuefeng's avatar
wuyuefeng committed
137
}