scannet_dataset.py 5.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import os.path as osp

import mmcv
import numpy as np
import torch.utils.data as torch_data

from mmdet.datasets import DATASETS
from .pipelines import Compose


@DATASETS.register_module()
class ScannetDataset(torch_data.dataset):
    type2class = {
        'cabinet': 0,
        'bed': 1,
        'chair': 2,
        'sofa': 3,
        'table': 4,
        'door': 5,
        'window': 6,
        'bookshelf': 7,
        'picture': 8,
        'counter': 9,
        'desk': 10,
        'curtain': 11,
        'refrigerator': 12,
        'showercurtrain': 13,
        'toilet': 14,
        'sink': 15,
        'bathtub': 16,
        'garbagebin': 17
    }
    class2type = {
        0: 'cabinet',
        1: 'bed',
        2: 'chair',
        3: 'sofa',
        4: 'table',
        5: 'door',
        6: 'window',
        7: 'bookshelf',
        8: 'picture',
        9: 'counter',
        10: 'desk',
        11: 'curtain',
        12: 'refrigerator',
        13: 'showercurtrain',
        14: 'toilet',
        15: 'sink',
        16: 'bathtub',
        17: 'garbagebin'
    }
    CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')

    def __init__(self,
                 root_path,
                 ann_file,
                 split,
                 pipeline=None,
                 training=False,
                 class_names=None,
                 test_mode=False):
        super().__init__()
        self.root_path = root_path
        self.class_names = class_names if class_names else self.CLASSES
        self.split = split

        self.data_path = os.path.join(root_path, 'scannet_train_instance_data')
        self.test_mode = test_mode
        self.training = training
        self.mode = 'TRAIN' if self.training else 'TEST'
        self.ann_file = ann_file

        # set group flag for the sampler
        if not self.test_mode:
            self._set_group_flag()

        self.scannet_infos = mmcv.load(ann_file)

        # dataset config
        self.num_class = len(self.class_names)
        self.pcd_limit_range = [0, -40, -3.0, 70.4, 40, 3.0]
        self.nyu40ids = np.array(
            [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39])
        self.nyu40id2class = {
            nyu40id: i
            for i, nyu40id in enumerate(list(self.nyu40ids))
        }
        if pipeline is not None:
            self.pipeline = Compose(pipeline)

    def __getitem__(self, idx):
        if self.test_mode:
            return self.prepare_test_data(idx)
        while True:
            data = self.prepare_train_data(idx)
            if data is None:
                idx = self._rand_another(idx)
                continue
            return data

    def prepare_test_data(self, index):
        input_dict = self.get_sensor_data(index)
        example = self.pipeline(input_dict)
        return example

    def prepare_train_data(self, index):
        input_dict = self.get_sensor_data(index)
        input_dict = self.train_pre_pipeline(input_dict)
        if input_dict is None:
            return None
        example = self.pipeline(input_dict)
        if len(example['gt_bboxes_3d']._data) == 0:
            return None
        return example

    def train_pre_pipeline(self, input_dict):
        if len(input_dict['gt_bboxes_3d']) == 0:
            return None
        return input_dict

    def get_sensor_data(self, index):
        info = self.scannet_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
        points = self.get_lidar(sample_idx)

        input_dict = dict(
            sample_idx=sample_idx,
            points=points,
        )

        if self.with_label:
            annos = self.get_ann_info(index, sample_idx)
            input_dict.update(annos)

        return input_dict

    def get_lidar(self, sample_idx):
        lidar_file = os.path.join(self.data_path, sample_idx + '_vert.npy')
        assert os.path.exists(lidar_file)
        return np.load(lidar_file)

    def get_ann_info(self, index, sample_idx):
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.kitti_infos[index]
        if info['annos']['gt_num'] != 0:
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth']  # k, 6
            gt_labels = info['annos']['class'].reshape(-1, 1)
            gt_bboxes_3d_mask = np.ones_like(gt_labels)
        else:
            gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32)
            gt_labels = np.zeros((1, 1))
            gt_bboxes_3d_mask = np.zeros((1, 1))
        pts_instance_mask_path = osp.join(self.data_path,
                                          sample_idx + '_ins_label.npy')
        pts_semantic_mask_path = osp.join(self.data_path,
                                          sample_idx + '_sem_label.npy')

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
            gt_labels=gt_labels,
            gt_bboxes_3d_mask=gt_bboxes_3d_mask,
            pts_instance_mask_path=pts_instance_mask_path,
            pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results

    def _rand_another(self, idx):
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def __len__(self):
        return len(self.scannet_infos)