second_head.py 16 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import numpy as np
import torch
import torch.nn as nn
4
from mmcv.cnn import bias_init_with_prob, normal_init
zhangwenwei's avatar
zhangwenwei committed
5
6
7
8
9
10

from mmdet3d.core import (PseudoSampler, box_torch_ops,
                          boxes3d_to_bev_torch_lidar, build_anchor_generator,
                          build_assigner, build_bbox_coder, build_sampler,
                          multi_apply)
from mmdet3d.ops.iou3d.iou3d_utils import nms_gpu, nms_normal_gpu
zhangwenwei's avatar
zhangwenwei committed
11
from mmdet.models import HEADS
zhangwenwei's avatar
zhangwenwei committed
12
13
14
15
16
17
from ..builder import build_loss
from .train_mixins import AnchorTrainMixin


@HEADS.register_module
class SECONDHead(nn.Module, AnchorTrainMixin):
18
19
    """Anchor-based head for VoxelNet detectors.

zhangwenwei's avatar
zhangwenwei committed
20
    Args:
21
        class_name (list[str]): name of classes (TODO: to be removed)
zhangwenwei's avatar
zhangwenwei committed
22
        in_channels (int): Number of channels in the input feature map.
23
24
        train_cfg (dict): train configs
        test_cfg (dict): test configs
zhangwenwei's avatar
zhangwenwei committed
25
        feat_channels (int): Number of channels of the feature map.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
        use_direction_classifier (bool): Whether to add a direction classifier.
        encode_bg_as_zeros (bool): Whether to use sigmoid of softmax
            (TODO: to be removed)
        box_code_size (int): The size of box code.
        anchor_generator(dict): Config dict of anchor generator.
        assigner_per_size (bool): Whether to do assignment for each separate
            anchor size.
        assign_per_class (bool): Whether to do assignment for each class.
        diff_rad_by_sin (bool): Whether to change the difference into sin
            difference for box regression loss.
        dir_offset (float | int): The offset of BEV rotation angles
            (TODO: may be moved into box coder)
        dirlimit_offset (float | int): The limited range of BEV rotation angles
            (TODO: may be moved into box coder)
        box_coder (dict): Config dict of box coders.
zhangwenwei's avatar
zhangwenwei committed
41
42
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
43
        loss_dir (dict): Config of direction classifier loss.
zhangwenwei's avatar
zhangwenwei committed
44
45
46
47
48
49
50
51
52
53
54
    """  # noqa: W605

    def __init__(self,
                 class_name,
                 in_channels,
                 train_cfg,
                 test_cfg,
                 feat_channels=256,
                 use_direction_classifier=True,
                 encode_bg_as_zeros=False,
                 box_code_size=7,
55
56
57
58
59
60
61
62
                 anchor_generator=dict(
                     type='Anchor3DRangeGenerator',
                     range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
                     strides=[2],
                     sizes=[[1.6, 3.9, 1.56]],
                     rotations=[0, 1.57],
                     custom_values=[],
                     reshape_out=False),
zhangwenwei's avatar
zhangwenwei committed
63
64
65
66
67
                 assigner_per_size=False,
                 assign_per_class=False,
                 diff_rad_by_sin=True,
                 dir_offset=0,
                 dir_limit_offset=1,
68
                 bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
zhangwenwei's avatar
zhangwenwei committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
                 loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2)):
        super().__init__()
        self.in_channels = in_channels
        self.num_classes = len(class_name)
        self.feat_channels = feat_channels
        self.diff_rad_by_sin = diff_rad_by_sin
        self.use_direction_classifier = use_direction_classifier
        # self.encode_background_as_zeros = encode_bg_as_zeros
        self.box_code_size = box_code_size
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.assigner_per_size = assigner_per_size
        self.assign_per_class = assign_per_class
        self.dir_offset = dir_offset
        self.dir_limit_offset = dir_limit_offset

        # build target assigner & sampler
        if train_cfg is not None:
            self.sampling = loss_cls['type'] not in ['FocalLoss', 'GHMC']
            if self.sampling:
                self.bbox_sampler = build_sampler(train_cfg.sampler)
            else:
                self.bbox_sampler = PseudoSampler()
            if isinstance(train_cfg.assigner, dict):
                self.bbox_assigner = build_assigner(train_cfg.assigner)
            elif isinstance(train_cfg.assigner, list):
                self.bbox_assigner = [
                    build_assigner(res) for res in train_cfg.assigner
                ]

        # build anchor generator
107
        self.anchor_generator = build_anchor_generator(anchor_generator)
zhangwenwei's avatar
zhangwenwei committed
108
        # In 3D detection, the anchor stride is connected with anchor size
109
        self.num_anchors = self.anchor_generator.num_base_anchors
zhangwenwei's avatar
zhangwenwei committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

        self._init_layers()
        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
        if not self.use_sigmoid_cls:
            self.num_classes += 1
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.loss_dir = build_loss(loss_dir)
        self.fp16_enabled = False

    def _init_layers(self):
        self.cls_out_channels = self.num_anchors * self.num_classes
        self.conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1)
        self.conv_reg = nn.Conv2d(self.feat_channels,
                                  self.num_anchors * self.box_code_size, 1)
        if self.use_direction_classifier:
            self.conv_dir_cls = nn.Conv2d(self.feat_channels,
                                          self.num_anchors * 2, 1)

    def init_weights(self):
        bias_cls = bias_init_with_prob(0.01)
        normal_init(self.conv_cls, std=0.01, bias=bias_cls)
        normal_init(self.conv_reg, std=0.01)

    def forward_single(self, x):
        cls_score = self.conv_cls(x)
        bbox_pred = self.conv_reg(x)
        dir_cls_preds = None
        if self.use_direction_classifier:
            dir_cls_preds = self.conv_dir_cls(x)
        return cls_score, bbox_pred, dir_cls_preds

    def forward(self, feats):
        return multi_apply(self.forward_single, feats)

145
    def get_anchors(self, featmap_sizes, input_metas, device='cuda'):
zhangwenwei's avatar
zhangwenwei committed
146
147
148
149
150
151
152
153
154
155
        """Get anchors according to feature map sizes.
        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            input_metas (list[dict]): contain pcd and img's meta info.
        Returns:
            tuple: anchors of each image, valid flags of each image
        """
        num_imgs = len(input_metas)
        # since feature map sizes of all images are the same, we only compute
        # anchors for one time
156
157
        multi_level_anchors = self.anchor_generator.grid_anchors(
            featmap_sizes, device=device)
zhangwenwei's avatar
zhangwenwei committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        anchor_list = [multi_level_anchors for _ in range(num_imgs)]
        return anchor_list

    def loss_single(self, cls_score, bbox_pred, dir_cls_preds, labels,
                    label_weights, bbox_targets, bbox_weights, dir_targets,
                    dir_weights, num_total_samples):
        # classification loss
        if num_total_samples is None:
            num_total_samples = int(cls_score.shape[0])
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)
        cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.num_classes)
        loss_cls = self.loss_cls(
            cls_score, labels, label_weights, avg_factor=num_total_samples)

        # regression loss
        bbox_targets = bbox_targets.reshape(-1, self.box_code_size)
        bbox_weights = bbox_weights.reshape(-1, self.box_code_size)
        code_weight = self.train_cfg.get('code_weight', None)

        if code_weight:
            bbox_weights = bbox_weights * bbox_weights.new_tensor(code_weight)
        bbox_pred = bbox_pred.permute(0, 2, 3,
                                      1).reshape(-1, self.box_code_size)
        if self.diff_rad_by_sin:
            bbox_pred, bbox_targets = self.add_sin_difference(
                bbox_pred, bbox_targets)
        loss_bbox = self.loss_bbox(
            bbox_pred,
            bbox_targets,
            bbox_weights,
            avg_factor=num_total_samples)

        # direction classification loss
        loss_dir = None
        if self.use_direction_classifier:
            dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).reshape(-1, 2)
            dir_targets = dir_targets.reshape(-1)
            dir_weights = dir_weights.reshape(-1)
            loss_dir = self.loss_dir(
                dir_cls_preds,
                dir_targets,
                dir_weights,
                avg_factor=num_total_samples)

        return loss_cls, loss_bbox, loss_dir

    @staticmethod
    def add_sin_difference(boxes1, boxes2):
        rad_pred_encoding = torch.sin(boxes1[..., -1:]) * torch.cos(
            boxes2[..., -1:])
        rad_tg_encoding = torch.cos(boxes1[..., -1:]) * torch.sin(boxes2[...,
                                                                         -1:])
        boxes1 = torch.cat([boxes1[..., :-1], rad_pred_encoding], dim=-1)
        boxes2 = torch.cat([boxes2[..., :-1], rad_tg_encoding], dim=-1)
        return boxes1, boxes2

    def loss(self,
             cls_scores,
             bbox_preds,
             dir_cls_preds,
             gt_bboxes,
             gt_labels,
             input_metas,
             gt_bboxes_ignore=None):
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
224
225
226
227
        assert len(featmap_sizes) == self.anchor_generator.num_levels
        device = cls_scores[0].device
        anchor_list = self.get_anchors(
            featmap_sizes, input_metas, device=device)
zhangwenwei's avatar
zhangwenwei committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
        cls_reg_targets = self.anchor_target_3d(
            anchor_list,
            gt_bboxes,
            input_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            num_classes=self.num_classes,
            label_channels=label_channels,
            sampling=self.sampling)

        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         dir_targets_list, dir_weights_list, num_total_pos,
         num_total_neg) = cls_reg_targets
        num_total_samples = (
            num_total_pos + num_total_neg if self.sampling else num_total_pos)

        # num_total_samples = None
        losses_cls, losses_bbox, losses_dir = multi_apply(
            self.loss_single,
            cls_scores,
            bbox_preds,
            dir_cls_preds,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            dir_targets_list,
            dir_weights_list,
            num_total_samples=num_total_samples)
        return dict(
            loss_cls_3d=losses_cls,
            loss_bbox_3d=losses_bbox,
            loss_dir_3d=losses_dir)

    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   dir_cls_preds,
                   input_metas,
                   rescale=False):
        assert len(cls_scores) == len(bbox_preds)
        assert len(cls_scores) == len(dir_cls_preds)
        num_levels = len(cls_scores)
274
275
        featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
        device = cls_scores[0].device
276
        mlvl_anchors = self.anchor_generator.grid_anchors(
277
            featmap_sizes, device=device)
zhangwenwei's avatar
zhangwenwei committed
278
        mlvl_anchors = [
279
            anchor.reshape(-1, self.box_code_size) for anchor in mlvl_anchors
zhangwenwei's avatar
zhangwenwei committed
280
        ]
281

zhangwenwei's avatar
zhangwenwei committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        result_list = []
        for img_id in range(len(input_metas)):
            cls_score_list = [
                cls_scores[i][img_id].detach() for i in range(num_levels)
            ]
            bbox_pred_list = [
                bbox_preds[i][img_id].detach() for i in range(num_levels)
            ]
            dir_cls_pred_list = [
                dir_cls_preds[i][img_id].detach() for i in range(num_levels)
            ]

            input_meta = input_metas[img_id]
            proposals = self.get_bboxes_single(cls_score_list, bbox_pred_list,
                                               dir_cls_pred_list, mlvl_anchors,
                                               input_meta, rescale)
            result_list.append(proposals)
        return result_list

    def get_bboxes_single(self,
                          cls_scores,
                          bbox_preds,
                          dir_cls_preds,
                          mlvl_anchors,
                          input_meta,
                          rescale=False):
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_dir_scores = []
        mlvl_bboxes_for_nms = []
        for cls_score, bbox_pred, dir_cls_pred, anchors in zip(
                cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            if self.use_direction_classifier:
                assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:]

            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.num_classes)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)
            bbox_pred = bbox_pred.permute(1, 2,
                                          0).reshape(-1, self.box_code_size)
            dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]

            score_thr = self.test_cfg.get('score_thr', 0)
            if score_thr > 0:
                if self.use_sigmoid_cls:
                    max_scores, _ = scores.max(dim=1)
                else:
                    max_scores, _ = scores[:, 1:].max(dim=1)
                thr_inds = (max_scores >= score_thr)
                anchors = anchors[thr_inds]
                bbox_pred = bbox_pred[thr_inds]
                scores = scores[thr_inds]
                dir_cls_scores = dir_cls_score[thr_inds]
341
            bboxes = self.bbox_coder.decode(anchors, bbox_pred)
zhangwenwei's avatar
zhangwenwei committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
            bboxes_for_nms = boxes3d_to_bev_torch_lidar(bboxes)
            mlvl_bboxes_for_nms.append(bboxes_for_nms)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
            mlvl_dir_scores.append(dir_cls_scores)

        mlvl_bboxes = torch.cat(mlvl_bboxes)
        mlvl_bboxes_for_nms = torch.cat(mlvl_bboxes_for_nms)
        mlvl_scores = torch.cat(mlvl_scores)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)

        if len(mlvl_scores) > 0:
            mlvl_scores, mlvl_label_preds = mlvl_scores.max(dim=-1)
            if self.test_cfg.use_rotate_nms:
                nms_func = nms_gpu
            else:
                nms_func = nms_normal_gpu
            selected = nms_func(mlvl_bboxes_for_nms, mlvl_scores,
                                self.test_cfg.nms_thr)
        else:
            selected = []

        if len(selected) > 0:
            selected_bboxes = mlvl_bboxes[selected]
            selected_scores = mlvl_scores[selected]
            selected_label_preds = mlvl_label_preds[selected]
            selected_dir_scores = mlvl_dir_scores[selected]
369
            # TODO: move dir_offset to box coder
zhangwenwei's avatar
zhangwenwei committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
            dir_rot = box_torch_ops.limit_period(
                selected_bboxes[..., -1] - self.dir_offset,
                self.dir_limit_offset, np.pi)
            selected_bboxes[..., -1] = (
                dir_rot + self.dir_offset +
                np.pi * selected_dir_scores.to(selected_bboxes.dtype))

            return dict(
                box3d_lidar=selected_bboxes.cpu(),
                scores=selected_scores.cpu(),
                label_preds=selected_label_preds.cpu(),
                sample_idx=input_meta['sample_idx'],
            )

        return dict(
            box3d_lidar=mlvl_scores.new_zeros([0, 7]).cpu(),
            scores=mlvl_scores.new_zeros([0]).cpu(),
            label_preds=mlvl_scores.new_zeros([0, 4]).cpu(),
            sample_idx=input_meta['sample_idx'],
        )