scannet_dataset.py 5.21 KB
Newer Older
1
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
2
from os import path as osp
3

liyinhao's avatar
liyinhao committed
4
from mmdet3d.core import show_result
wuyuefeng's avatar
wuyuefeng committed
5
from mmdet3d.core.bbox import DepthInstance3DBoxes
6
from mmdet.datasets import DATASETS
zhangwenwei's avatar
zhangwenwei committed
7
from .custom_3d import Custom3DDataset
8
9
10


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
11
class ScanNetDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
12
    """ScanNet Dataset.
13

wangtai's avatar
wangtai committed
14
15
    This class serves as the API for experiments on the ScanNet Dataset.

16
17
    Please refer to `<https://github.com/ScanNet/ScanNet>`_
    for data downloading. It is recommended to symlink the dataset root to
wangtai's avatar
wangtai committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    $MMDETECTION3D/data and organize them as the doc shows.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

            - 'LiDAR': box in LiDAR coordinates
            - 'Depth': box in depth coordinates, usually for indoor dataset
            - 'Camera': box in camera coordinates
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
42
43
44
45
46
47
    CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
48
                 data_root,
49
50
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
51
                 classes=None,
liyinhao's avatar
liyinhao committed
52
                 modality=None,
53
                 box_type_3d='Depth',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
54
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
55
                 test_mode=False):
56
57
58
59
60
61
62
63
64
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)
65

liyinhao's avatar
liyinhao committed
66
    def get_ann_info(self, index):
67
68
69
70
71
72
73
74
75
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: Standard annotation dictionary
                consists of the data information.

76
                - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`):
77
78
79
80
81
                    3D ground truth bboxes
                - gt_labels_3d (np.ndarray): labels of ground truths
                - pts_instance_mask_path (str): path of instance masks
                - pts_semantic_mask_path (str): path of semantic masks
        """
82
        # Use index to get the annos, thus the evalhook could also use this api
liyinhao's avatar
liyinhao committed
83
        info = self.data_infos[index]
84
        if info['annos']['gt_num'] != 0:
liyinhao's avatar
liyinhao committed
85
86
87
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
            gt_labels_3d = info['annos']['class'].astype(np.long)
88
        else:
liyinhao's avatar
liyinhao committed
89
            gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
liyinhao's avatar
liyinhao committed
90
            gt_labels_3d = np.zeros((0, ), dtype=np.long)
wuyuefeng's avatar
wuyuefeng committed
91
92
93
94
95
96
97
98

        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            with_yaw=False,
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

zhangwenwei's avatar
zhangwenwei committed
99
        pts_instance_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
100
                                          info['pts_instance_mask_path'])
zhangwenwei's avatar
zhangwenwei committed
101
        pts_semantic_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
102
                                          info['pts_semantic_mask_path'])
103
104
105

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
106
            gt_labels_3d=gt_labels_3d,
107
108
109
            pts_instance_mask_path=pts_instance_mask_path,
            pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results
liyinhao's avatar
liyinhao committed
110
111

    def show(self, results, out_dir):
112
113
114
115
116
117
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
        """
liyinhao's avatar
liyinhao committed
118
119
120
121
122
123
124
125
126
127
128
129
130
        assert out_dir is not None, 'Expect out_dir, got none.'
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
            points = np.fromfile(
                osp.join(self.data_root, pts_path),
                dtype=np.float32).reshape(-1, 6)
            gt_bboxes = np.pad(data_info['annos']['gt_boxes_upright_depth'],
                               ((0, 0), (0, 1)), 'constant')
            pred_bboxes = result['boxes_3d'].tensor.numpy()
            pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
            show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name)