data_pipeline.md 4.78 KB
Newer Older
zhangwenwei's avatar
Doc  
zhangwenwei committed
1
# Tutorial 3: Custom Data Pipelines
zhangwenwei's avatar
zhangwenwei committed
2

zhangwenwei's avatar
Doc  
zhangwenwei committed
3
## Design of Data pipelines
zhangwenwei's avatar
zhangwenwei committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Following typical conventions, we use `Dataset` and `DataLoader` for data loading
with multiple workers. `Dataset` returns a dict of data items corresponding
the arguments of models' forward method.
Since the data in object detection may not be the same size (image size, gt bbox size, etc.),
we introduce a new `DataContainer` type in MMCV to help collect and distribute
data of different size.
See [here](https://github.com/open-mmlab/mmcv/blob/master/mmcv/parallel/data_container.py) for more details.

The data preparation pipeline and the dataset is decomposed. Usually a dataset
defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.
A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.

We present a classical pipeline in the following figure. The blue blocks are pipeline operations. With the pipeline going on, each operator can add new keys (marked as green) to the result dict or update the existing keys (marked as orange).
zhangwenwei's avatar
Doc  
zhangwenwei committed
18
![pipeline figure](../../demo/data_pipeline.png)
zhangwenwei's avatar
zhangwenwei committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The operations are categorized into data loading, pre-processing, formatting and test-time augmentation.

Here is an pipeline example for Faster R-CNN.
```python
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
zhangwenwei's avatar
zhangwenwei committed
43
44
45
46
47
48
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
zhangwenwei's avatar
zhangwenwei committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        ])
]
```

For each operation, we list the related dict fields that are added/updated/removed.

### Data loading

`LoadImageFromFile`
- add: img, img_shape, ori_shape

`LoadAnnotations`
- add: gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks, gt_semantic_seg, bbox_fields, mask_fields

`LoadProposals`
- add: proposals

### Pre-processing

`Resize`
- add: scale, scale_idx, pad_shape, scale_factor, keep_ratio
- update: img, img_shape, *bbox_fields, *mask_fields, *seg_fields

`RandomFlip`
- add: flip
- update: img, *bbox_fields, *mask_fields, *seg_fields

`Pad`
- add: pad_fixed_size, pad_size_divisor
- update: img, pad_shape, *mask_fields, *seg_fields

`RandomCrop`
- update: img, pad_shape, gt_bboxes, gt_labels, gt_masks, *bbox_fields

`Normalize`
- add: img_norm_cfg
- update: img

`SegRescale`
- update: gt_semantic_seg

`PhotoMetricDistortion`
- update: img

`Expand`
- update: img, gt_bboxes

`MinIoURandomCrop`
- update: img, gt_bboxes, gt_labels

`Corrupt`
- update: img

### Formatting

`ToTensor`
- update: specified by `keys`.

`ImageToTensor`
- update: specified by `keys`.

`Transpose`
- update: specified by `keys`.

`ToDataContainer`
- update: specified by `fields`.

`DefaultFormatBundle`
- update: img, proposals, gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks, gt_semantic_seg

`Collect`
zhangwenwei's avatar
zhangwenwei committed
120
- add: img_meta (the keys of img_meta is specified by `meta_keys`)
zhangwenwei's avatar
zhangwenwei committed
121
122
123
124
- remove: all other keys except for those specified by `keys`

### Test time augmentation

zhangwenwei's avatar
zhangwenwei committed
125
`MultiScaleFlipAug`
zhangwenwei's avatar
zhangwenwei committed
126

zhangwenwei's avatar
Doc  
zhangwenwei committed
127
## Extend and use custom pipelines
zhangwenwei's avatar
zhangwenwei committed
128

zhangwenwei's avatar
Doc  
zhangwenwei committed
129
1. Write a new pipeline in any file, e.g., `my_pipeline.py`. It takes a dict as input and return a dict.
zhangwenwei's avatar
zhangwenwei committed
130
131

    ```python
zhangwenwei's avatar
Doc  
zhangwenwei committed
132
    from mmdet.datasets import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
133

zhangwenwei's avatar
Doc  
zhangwenwei committed
134
135
    @PIPELINES.register_module()
    class MyTransform:
zhangwenwei's avatar
zhangwenwei committed
136

zhangwenwei's avatar
Doc  
zhangwenwei committed
137
138
139
        def __call__(self, results):
            results['dummy'] = True
            return results
zhangwenwei's avatar
zhangwenwei committed
140
141
    ```

zhangwenwei's avatar
Doc  
zhangwenwei committed
142
2. Import the new class.
zhangwenwei's avatar
zhangwenwei committed
143
144

    ```python
zhangwenwei's avatar
Doc  
zhangwenwei committed
145
    from .my_pipeline import MyTransform
zhangwenwei's avatar
zhangwenwei committed
146
147
    ```

zhangwenwei's avatar
Doc  
zhangwenwei committed
148
3. Use it in config files.
zhangwenwei's avatar
zhangwenwei committed
149
150

    ```python
zhangwenwei's avatar
Doc  
zhangwenwei committed
151
152
153
154
155
156
157
158
159
160
161
162
163
    img_norm_cfg = dict(
        mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
    train_pipeline = [
        dict(type='LoadImageFromFile'),
        dict(type='LoadAnnotations', with_bbox=True),
        dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
        dict(type='RandomFlip', flip_ratio=0.5),
        dict(type='Normalize', **img_norm_cfg),
        dict(type='Pad', size_divisor=32),
        dict(type='MyTransform'),
        dict(type='DefaultFormatBundle'),
        dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
    ]
zhangwenwei's avatar
zhangwenwei committed
164
    ```