voxel_encoder.py 19.7 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import torch
2
from mmcv.cnn import build_norm_layer
zhangwenwei's avatar
zhangwenwei committed
3
4
5
6
7
from torch import nn

from mmdet3d.ops import DynamicScatter
from .. import builder
from ..registry import VOXEL_ENCODERS
zhangwenwei's avatar
zhangwenwei committed
8
from .utils import VFELayer, get_paddings_indicator
zhangwenwei's avatar
zhangwenwei committed
9
10


11
@VOXEL_ENCODERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
12
class HardSimpleVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
13
    """Simple voxel feature encoder used in SECOND.
zhangwenwei's avatar
zhangwenwei committed
14

zhangwenwei's avatar
zhangwenwei committed
15
    It simply averages the values of points in a voxel.
16
17
18

    Args:
        num_features (int): Number of features to use. Default: 4.
zhangwenwei's avatar
zhangwenwei committed
19
    """
zhangwenwei's avatar
zhangwenwei committed
20

21
    def __init__(self, num_features=4):
zhangwenwei's avatar
zhangwenwei committed
22
        super(HardSimpleVFE, self).__init__()
23
        self.num_features = num_features
zhangwenwei's avatar
zhangwenwei committed
24
25

    def forward(self, features, num_points, coors):
zhangwenwei's avatar
zhangwenwei committed
26
        """Forward function.
zhangwenwei's avatar
zhangwenwei committed
27
28

        Args:
wangtai's avatar
wangtai committed
29
            features (torch.Tensor): Point features in shape
zhangwenwei's avatar
zhangwenwei committed
30
31
32
33
34
35
36
37
38
                (N, M, 3(4)). N is the number of voxels and M is the maximum
                number of points inside a single voxel.
            num_points (torch.Tensor): Number of points in each voxel,
                 shape (N, ).
            coors (torch.Tensor): Coordinates of voxels.

        Returns:
            torch.Tensor: Mean of points inside each voxel in shape (N, 3(4))
        """
39
        points_mean = features[:, :, :self.num_features].sum(
zhangwenwei's avatar
zhangwenwei committed
40
41
42
43
            dim=1, keepdim=False) / num_points.type_as(features).view(-1, 1)
        return points_mean.contiguous()


44
@VOXEL_ENCODERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
45
class DynamicSimpleVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
46
    """Simple dynamic voxel feature encoder used in DV-SECOND.
zhangwenwei's avatar
zhangwenwei committed
47
48
49
50
51
52
53
54

    It simply averages the values of points in a voxel.
    But the number of points in a voxel is dynamic and varies.

    Args:
        voxel_size (tupe[float]): Size of a single voxel
        point_cloud_range (tuple[float]): Range of the point cloud and voxels
    """
zhangwenwei's avatar
zhangwenwei committed
55
56
57
58

    def __init__(self,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1)):
zhangwenwei's avatar
zhangwenwei committed
59
        super(DynamicSimpleVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
60
61
62
63
        self.scatter = DynamicScatter(voxel_size, point_cloud_range, True)

    @torch.no_grad()
    def forward(self, features, coors):
zhangwenwei's avatar
zhangwenwei committed
64
        """Forward function.
zhangwenwei's avatar
zhangwenwei committed
65
66

        Args:
wangtai's avatar
wangtai committed
67
            features (torch.Tensor): Point features in shape
zhangwenwei's avatar
zhangwenwei committed
68
69
70
71
72
73
74
                (N, 3(4)). N is the number of points.
            coors (torch.Tensor): Coordinates of voxels.

        Returns:
            torch.Tensor: Mean of points inside each voxel in shape (M, 3(4)).
                M is the number of voxels.
        """
zhangwenwei's avatar
zhangwenwei committed
75
76
77
78
79
80
        # This function is used from the start of the voxelnet
        # num_points: [concated_num_points]
        features, features_coors = self.scatter(features, coors)
        return features, features_coors


81
@VOXEL_ENCODERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
82
class DynamicVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
83
    """Dynamic Voxel feature encoder used in DV-SECOND.
zhangwenwei's avatar
zhangwenwei committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

    It encodes features of voxels and their points. It could also fuse
    image feature into voxel features in a point-wise manner.
    The number of points inside the voxel varies.

    Args:
        in_channels (int): Input channels of VFE. Defaults to 4.
        feat_channels (list(int)): Channels of features in VFE.
        with_distance (bool): Whether to use the L2 distance of points to the
            origin point. Default False.
        with_cluster_center (bool): Whether to use the distance to cluster
            center of points inside a voxel. Default to False.
        with_voxel_center (bool): Whether to use the distance to center of
            voxel for each points inside a voxel. Default to False.
        voxel_size (tuple[float]): Size of a single voxel. Default to
            (0.2, 0.2, 4).
        point_cloud_range (tuple[float]): The range of points or voxels.
            Default to (0, -40, -3, 70.4, 40, 1).
        norm_cfg (dict): Config dict of normalization layers.
        mode (str): The mode when pooling features of points inside a voxel.
            Available options include 'max' and 'avg'. Default to 'max'.
        fusion_layer (dict | None): The config dict of fusion layer used in
            multi-modal detectors. Default to None.
        return_point_feats (bool): Whether to return the features of each
            points. Default to False.
    """
zhangwenwei's avatar
zhangwenwei committed
110
111

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
112
113
                 in_channels=4,
                 feat_channels=[],
zhangwenwei's avatar
zhangwenwei committed
114
115
116
117
118
119
120
121
122
123
                 with_distance=False,
                 with_cluster_center=False,
                 with_voxel_center=False,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 mode='max',
                 fusion_layer=None,
                 return_point_feats=False):
        super(DynamicVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
124
125
        assert mode in ['avg', 'max']
        assert len(feat_channels) > 0
zhangwenwei's avatar
zhangwenwei committed
126
        if with_cluster_center:
zhangwenwei's avatar
zhangwenwei committed
127
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
128
        if with_voxel_center:
zhangwenwei's avatar
zhangwenwei committed
129
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
130
        if with_distance:
zhangwenwei's avatar
zhangwenwei committed
131
132
            in_channels += 3
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        self._with_distance = with_distance
        self._with_cluster_center = with_cluster_center
        self._with_voxel_center = with_voxel_center
        self.return_point_feats = return_point_feats

        # Need pillar (voxel) size and x/y offset in order to calculate offset
        self.vx = voxel_size[0]
        self.vy = voxel_size[1]
        self.vz = voxel_size[2]
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]
        self.point_cloud_range = point_cloud_range
        self.scatter = DynamicScatter(voxel_size, point_cloud_range, True)

zhangwenwei's avatar
zhangwenwei committed
148
        feat_channels = [self.in_channels] + list(feat_channels)
zhangwenwei's avatar
zhangwenwei committed
149
        vfe_layers = []
zhangwenwei's avatar
zhangwenwei committed
150
151
152
        for i in range(len(feat_channels) - 1):
            in_filters = feat_channels[i]
            out_filters = feat_channels[i + 1]
zhangwenwei's avatar
zhangwenwei committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
            if i > 0:
                in_filters *= 2
            norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters)
            vfe_layers.append(
                nn.Sequential(
                    nn.Linear(in_filters, out_filters, bias=False), norm_layer,
                    nn.ReLU(inplace=True)))
            self.vfe_layers = nn.ModuleList(vfe_layers)
        self.num_vfe = len(vfe_layers)
        self.vfe_scatter = DynamicScatter(voxel_size, point_cloud_range,
                                          (mode != 'max'))
        self.cluster_scatter = DynamicScatter(
            voxel_size, point_cloud_range, average_points=True)
        self.fusion_layer = None
        if fusion_layer is not None:
            self.fusion_layer = builder.build_fusion_layer(fusion_layer)

    def map_voxel_center_to_point(self, pts_coors, voxel_mean, voxel_coors):
zhangwenwei's avatar
zhangwenwei committed
171
172
173
174
175
176
177
178
179
180
        """Map voxel features to its corresponding points.

        Args:
            pts_coors (torch.Tensor): Voxel coordinate of each point.
            voxel_mean (torch.Tensor): Voxel features to be mapped.
            voxel_coors (torch.Tensor): Coordinates of valid voxels

        Returns:
            torch.Tensor: Features or centers of each point.
        """
zhangwenwei's avatar
zhangwenwei committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        # Step 1: scatter voxel into canvas
        # Calculate necessary things for canvas creation
        canvas_z = int(
            (self.point_cloud_range[5] - self.point_cloud_range[2]) / self.vz)
        canvas_y = int(
            (self.point_cloud_range[4] - self.point_cloud_range[1]) / self.vy)
        canvas_x = int(
            (self.point_cloud_range[3] - self.point_cloud_range[0]) / self.vx)
        # canvas_channel = voxel_mean.size(1)
        batch_size = pts_coors[-1, 0] + 1
        canvas_len = canvas_z * canvas_y * canvas_x * batch_size
        # Create the canvas for this sample
        canvas = voxel_mean.new_zeros(canvas_len, dtype=torch.long)
        # Only include non-empty pillars
        indices = (
            voxel_coors[:, 0] * canvas_z * canvas_y * canvas_x +
            voxel_coors[:, 1] * canvas_y * canvas_x +
            voxel_coors[:, 2] * canvas_x + voxel_coors[:, 3])
        # Scatter the blob back to the canvas
        canvas[indices.long()] = torch.arange(
            start=0, end=voxel_mean.size(0), device=voxel_mean.device)

        # Step 2: get voxel mean for each point
        voxel_index = (
            pts_coors[:, 0] * canvas_z * canvas_y * canvas_x +
            pts_coors[:, 1] * canvas_y * canvas_x +
            pts_coors[:, 2] * canvas_x + pts_coors[:, 3])
        voxel_inds = canvas[voxel_index.long()]
        center_per_point = voxel_mean[voxel_inds, ...]
        return center_per_point

    def forward(self,
                features,
                coors,
                points=None,
                img_feats=None,
zhangwenwei's avatar
zhangwenwei committed
217
                img_metas=None):
zhangwenwei's avatar
zhangwenwei committed
218
        """Forward functions.
zhangwenwei's avatar
zhangwenwei committed
219
220
221
222
223
224
225
226

        Args:
            features (torch.Tensor): Features of voxels, shape is NxC.
            coors (torch.Tensor): Coordinates of voxels, shape is  Nx(1+NDim).
            points (list[torch.Tensor], optional): Raw points used to guide the
                multi-modality fusion. Defaults to None.
            img_feats (list[torch.Tensor], optional): Image fetures used for
                multi-modality fusion. Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
227
            img_metas (dict, optional): [description]. Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
228
229
230
231
232

        Returns:
            tuple: If `return_point_feats` is False, returns voxel features and
                its coordinates. If `return_point_feats` is True, returns
                feature of each points inside voxels.
zhangwenwei's avatar
zhangwenwei committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        """
        features_ls = [features]
        # Find distance of x, y, and z from cluster center
        if self._with_cluster_center:
            voxel_mean, mean_coors = self.cluster_scatter(features, coors)
            points_mean = self.map_voxel_center_to_point(
                coors, voxel_mean, mean_coors)
            # TODO: maybe also do cluster for reflectivity
            f_cluster = features[:, :3] - points_mean[:, :3]
            features_ls.append(f_cluster)

        # Find distance of x, y, and z from pillar center
        if self._with_voxel_center:
            f_center = features.new_zeros(size=(features.size(0), 3))
            f_center[:, 0] = features[:, 0] - (
                coors[:, 3].type_as(features) * self.vx + self.x_offset)
            f_center[:, 1] = features[:, 1] - (
                coors[:, 2].type_as(features) * self.vy + self.y_offset)
            f_center[:, 2] = features[:, 2] - (
                coors[:, 1].type_as(features) * self.vz + self.z_offset)
            features_ls.append(f_center)

        if self._with_distance:
            points_dist = torch.norm(features[:, :3], 2, 1, keepdim=True)
            features_ls.append(points_dist)

        # Combine together feature decorations
        features = torch.cat(features_ls, dim=-1)
        for i, vfe in enumerate(self.vfe_layers):
            point_feats = vfe(features)
            if (i == len(self.vfe_layers) - 1 and self.fusion_layer is not None
                    and img_feats is not None):
                point_feats = self.fusion_layer(img_feats, points, point_feats,
zhangwenwei's avatar
zhangwenwei committed
266
                                                img_metas)
zhangwenwei's avatar
zhangwenwei committed
267
268
269
270
271
272
273
274
275
276
277
278
            voxel_feats, voxel_coors = self.vfe_scatter(point_feats, coors)
            if i != len(self.vfe_layers) - 1:
                # need to concat voxel feats if it is not the last vfe
                feat_per_point = self.map_voxel_center_to_point(
                    coors, voxel_feats, voxel_coors)
                features = torch.cat([point_feats, feat_per_point], dim=1)

        if self.return_point_feats:
            return point_feats
        return voxel_feats, voxel_coors


279
@VOXEL_ENCODERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
280
class HardVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
281
    """Voxel feature encoder used in DV-SECOND.
zhangwenwei's avatar
zhangwenwei committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

    It encodes features of voxels and their points. It could also fuse
    image feature into voxel features in a point-wise manner.

    Args:
        in_channels (int): Input channels of VFE. Defaults to 4.
        feat_channels (list(int)): Channels of features in VFE.
        with_distance (bool): Whether to use the L2 distance of points to the
            origin point. Default False.
        with_cluster_center (bool): Whether to use the distance to cluster
            center of points inside a voxel. Default to False.
        with_voxel_center (bool): Whether to use the distance to center of
            voxel for each points inside a voxel. Default to False.
        voxel_size (tuple[float]): Size of a single voxel. Default to
            (0.2, 0.2, 4).
        point_cloud_range (tuple[float]): The range of points or voxels.
            Default to (0, -40, -3, 70.4, 40, 1).
        norm_cfg (dict): Config dict of normalization layers.
        mode (str): The mode when pooling features of points inside a voxel.
            Available options include 'max' and 'avg'. Default to 'max'.
        fusion_layer (dict | None): The config dict of fusion layer used in
            multi-modal detectors. Default to None.
        return_point_feats (bool): Whether to return the features of each
            points. Default to False.
    """
zhangwenwei's avatar
zhangwenwei committed
307
308

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
309
310
                 in_channels=4,
                 feat_channels=[],
zhangwenwei's avatar
zhangwenwei committed
311
312
313
314
315
316
317
318
319
320
                 with_distance=False,
                 with_cluster_center=False,
                 with_voxel_center=False,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 mode='max',
                 fusion_layer=None,
                 return_point_feats=False):
        super(HardVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
321
        assert len(feat_channels) > 0
zhangwenwei's avatar
zhangwenwei committed
322
        if with_cluster_center:
zhangwenwei's avatar
zhangwenwei committed
323
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
324
        if with_voxel_center:
zhangwenwei's avatar
zhangwenwei committed
325
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
326
        if with_distance:
zhangwenwei's avatar
zhangwenwei committed
327
328
            in_channels += 3
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        self._with_distance = with_distance
        self._with_cluster_center = with_cluster_center
        self._with_voxel_center = with_voxel_center
        self.return_point_feats = return_point_feats

        # Need pillar (voxel) size and x/y offset to calculate pillar offset
        self.vx = voxel_size[0]
        self.vy = voxel_size[1]
        self.vz = voxel_size[2]
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]
        self.point_cloud_range = point_cloud_range
        self.scatter = DynamicScatter(voxel_size, point_cloud_range, True)

zhangwenwei's avatar
zhangwenwei committed
344
        feat_channels = [self.in_channels] + list(feat_channels)
zhangwenwei's avatar
zhangwenwei committed
345
        vfe_layers = []
zhangwenwei's avatar
zhangwenwei committed
346
347
348
        for i in range(len(feat_channels) - 1):
            in_filters = feat_channels[i]
            out_filters = feat_channels[i + 1]
zhangwenwei's avatar
zhangwenwei committed
349
350
351
352
            if i > 0:
                in_filters *= 2
            # TODO: pass norm_cfg to VFE
            # norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters)
zhangwenwei's avatar
zhangwenwei committed
353
            if i == (len(feat_channels) - 2):
zhangwenwei's avatar
zhangwenwei committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
                cat_max = False
                max_out = True
                if fusion_layer:
                    max_out = False
            else:
                max_out = True
                cat_max = True
            vfe_layers.append(
                VFELayer(
                    in_filters,
                    out_filters,
                    norm_cfg=norm_cfg,
                    max_out=max_out,
                    cat_max=cat_max))
            self.vfe_layers = nn.ModuleList(vfe_layers)
        self.num_vfe = len(vfe_layers)

        self.fusion_layer = None
        if fusion_layer is not None:
            self.fusion_layer = builder.build_fusion_layer(fusion_layer)

    def forward(self,
                features,
                num_points,
                coors,
                img_feats=None,
zhangwenwei's avatar
zhangwenwei committed
380
                img_metas=None):
zhangwenwei's avatar
zhangwenwei committed
381
        """Forward functions.
zhangwenwei's avatar
zhangwenwei committed
382
383
384
385
386
387
388

        Args:
            features (torch.Tensor): Features of voxels, shape is MxNxC.
            num_points (torch.Tensor): Number of points in each voxel.
            coors (torch.Tensor): Coordinates of voxels, shape is Mx(1+NDim).
            img_feats (list[torch.Tensor], optional): Image fetures used for
                multi-modality fusion. Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
389
            img_metas (dict, optional): [description]. Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
390
391
392
393
394

        Returns:
            tuple: If `return_point_feats` is False, returns voxel features and
                its coordinates. If `return_point_feats` is True, returns
                feature of each points inside voxels.
zhangwenwei's avatar
zhangwenwei committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        """
        features_ls = [features]
        # Find distance of x, y, and z from cluster center
        if self._with_cluster_center:
            points_mean = (
                features[:, :, :3].sum(dim=1, keepdim=True) /
                num_points.type_as(features).view(-1, 1, 1))
            # TODO: maybe also do cluster for reflectivity
            f_cluster = features[:, :, :3] - points_mean
            features_ls.append(f_cluster)

        # Find distance of x, y, and z from pillar center
        if self._with_voxel_center:
            f_center = features.new_zeros(
                size=(features.size(0), features.size(1), 3))
            f_center[:, :, 0] = features[:, :, 0] - (
                coors[:, 3].type_as(features).unsqueeze(1) * self.vx +
                self.x_offset)
            f_center[:, :, 1] = features[:, :, 1] - (
                coors[:, 2].type_as(features).unsqueeze(1) * self.vy +
                self.y_offset)
            f_center[:, :, 2] = features[:, :, 2] - (
                coors[:, 1].type_as(features).unsqueeze(1) * self.vz +
                self.z_offset)
            features_ls.append(f_center)

        if self._with_distance:
            points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True)
            features_ls.append(points_dist)

        # Combine together feature decorations
        voxel_feats = torch.cat(features_ls, dim=-1)
        # The feature decorations were calculated without regard to whether
        # pillar was empty.
        # Need to ensure that empty voxels remain set to zeros.
        voxel_count = voxel_feats.shape[1]
        mask = get_paddings_indicator(num_points, voxel_count, axis=0)
        voxel_feats *= mask.unsqueeze(-1).type_as(voxel_feats)

        for i, vfe in enumerate(self.vfe_layers):
            voxel_feats = vfe(voxel_feats)
zhangwenwei's avatar
zhangwenwei committed
436

zhangwenwei's avatar
zhangwenwei committed
437
438
        if (self.fusion_layer is not None and img_feats is not None):
            voxel_feats = self.fusion_with_mask(features, mask, voxel_feats,
zhangwenwei's avatar
zhangwenwei committed
439
                                                coors, img_feats, img_metas)
zhangwenwei's avatar
zhangwenwei committed
440

zhangwenwei's avatar
zhangwenwei committed
441
442
443
        return voxel_feats

    def fusion_with_mask(self, features, mask, voxel_feats, coors, img_feats,
zhangwenwei's avatar
zhangwenwei committed
444
                         img_metas):
zhangwenwei's avatar
zhangwenwei committed
445
446
447
448
449
450
451
452
453
        """Fuse image and point features with mask.

        Args:
            features (torch.Tensor): Features of voxel, usually it is the
                values of points in voxels.
            mask (torch.Tensor): Mask indicates valid features in each voxel.
            voxel_feats (torch.Tensor): Features of voxels.
            coors (torch.Tensor): Coordinates of each single voxel.
            img_feats (list[torch.Tensor]): Multi-scale feature maps of image.
zhangwenwei's avatar
zhangwenwei committed
454
            img_metas (list(dict)): Meta information of image and points.
zhangwenwei's avatar
zhangwenwei committed
455
456
457
458

        Returns:
            torch.Tensor: Fused features of each voxel.
        """
zhangwenwei's avatar
zhangwenwei committed
459
460
461
462
463
464
465
466
467
        # the features is consist of a batch of points
        batch_size = coors[-1, 0] + 1
        points = []
        for i in range(batch_size):
            single_mask = (coors[:, 0] == i)
            points.append(features[single_mask][mask[single_mask]])

        point_feats = voxel_feats[mask]
        point_feats = self.fusion_layer(img_feats, points, point_feats,
zhangwenwei's avatar
zhangwenwei committed
468
                                        img_metas)
zhangwenwei's avatar
zhangwenwei committed
469

zhangwenwei's avatar
zhangwenwei committed
470
471
472
473
474
        voxel_canvas = voxel_feats.new_zeros(
            size=(voxel_feats.size(0), voxel_feats.size(1),
                  point_feats.size(-1)))
        voxel_canvas[mask] = point_feats
        out = torch.max(voxel_canvas, dim=1)[0]
zhangwenwei's avatar
zhangwenwei committed
475

zhangwenwei's avatar
zhangwenwei committed
476
        return out