show_result.py 9.02 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
import mmcv
import numpy as np
import trimesh
zhangwenwei's avatar
zhangwenwei committed
4
from os import path as osp
liyinhao's avatar
liyinhao committed
5
6


7
8
def _write_obj(points, out_filename):
    """Write points into ``obj`` format for meshlab visualization.
zhangwenwei's avatar
zhangwenwei committed
9
10
11
12
13

    Args:
        points (np.ndarray): Points in shape (N, dim).
        out_filename (str): Filename to be saved.
    """
liyinhao's avatar
liyinhao committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
    N = points.shape[0]
    fout = open(out_filename, 'w')
    for i in range(N):
        if points.shape[1] == 6:
            c = points[i, 3:].astype(int)
            fout.write(
                'v %f %f %f %d %d %d\n' %
                (points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2]))

        else:
            fout.write('v %f %f %f\n' %
                       (points[i, 0], points[i, 1], points[i, 2]))
    fout.close()


def _write_oriented_bbox(scene_bbox, out_filename):
zhangwenwei's avatar
zhangwenwei committed
30
    """Export oriented (around Z axis) scene bbox to meshes.
liyinhao's avatar
liyinhao committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

    Args:
        scene_bbox(list[ndarray] or ndarray): xyz pos of center and
            3 lengths (dx,dy,dz) and heading angle around Z axis.
            Y forward, X right, Z upward. heading angle of positive X is 0,
            heading angle of positive Y is 90 degrees.
        out_filename(str): Filename.
    """

    def heading2rotmat(heading_angle):
        rotmat = np.zeros((3, 3))
        rotmat[2, 2] = 1
        cosval = np.cos(heading_angle)
        sinval = np.sin(heading_angle)
        rotmat[0:2, 0:2] = np.array([[cosval, -sinval], [sinval, cosval]])
        return rotmat

    def convert_oriented_box_to_trimesh_fmt(box):
        ctr = box[:3]
        lengths = box[3:6]
        trns = np.eye(4)
        trns[0:3, 3] = ctr
        trns[3, 3] = 1.0
        trns[0:3, 0:3] = heading2rotmat(box[6])
        box_trimesh_fmt = trimesh.creation.box(lengths, trns)
        return box_trimesh_fmt

    if len(scene_bbox) == 0:
        scene_bbox = np.zeros((1, 7))
    scene = trimesh.scene.Scene()
    for box in scene_bbox:
        scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box))

    mesh_list = trimesh.util.concatenate(scene.dump())
65
66
    # save to obj file
    trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='obj')
liyinhao's avatar
liyinhao committed
67
68
69
70

    return


71
def show_result(points, gt_bboxes, pred_bboxes, out_dir, filename, show=True):
zhangwenwei's avatar
zhangwenwei committed
72
73
74
75
76
77
78
79
    """Convert results into format that is directly readable for meshlab.

    Args:
        points (np.ndarray): Points.
        gt_bboxes (np.ndarray): Ground truth boxes.
        pred_bboxes (np.ndarray): Predicted boxes.
        out_dir (str): Path of output directory
        filename (str): Filename of the current frame.
80
        show (bool): Visualize the results online. Defaults to True.
zhangwenwei's avatar
zhangwenwei committed
81
    """
82
    if show:
83
84
        from .open3d_vis import Visualizer

85
86
87
88
89
90
91
        vis = Visualizer(points)
        if pred_bboxes is not None:
            vis.add_bboxes(bbox3d=pred_bboxes)
        if gt_bboxes is not None:
            vis.add_bboxes(bbox3d=gt_bboxes, bbox_color=(0, 0, 1))
        vis.show()

liyinhao's avatar
liyinhao committed
92
93
    result_path = osp.join(out_dir, filename)
    mmcv.mkdir_or_exist(result_path)
liyinhao's avatar
liyinhao committed
94

95
    if points is not None:
96
        _write_obj(points, osp.join(result_path, f'{filename}_points.obj'))
97

liyinhao's avatar
liyinhao committed
98
    if gt_bboxes is not None:
99
100
101
        # bottom center to gravity center
        gt_bboxes[..., 2] += gt_bboxes[..., 5] / 2
        # the positive direction for yaw in meshlab is clockwise
liyinhao's avatar
liyinhao committed
102
        gt_bboxes[:, 6] *= -1
liyinhao's avatar
liyinhao committed
103
        _write_oriented_bbox(gt_bboxes,
104
                             osp.join(result_path, f'{filename}_gt.obj'))
liyinhao's avatar
liyinhao committed
105
106

    if pred_bboxes is not None:
107
108
109
        # bottom center to gravity center
        pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
        # the positive direction for yaw in meshlab is clockwise
liyinhao's avatar
liyinhao committed
110
        pred_bboxes[:, 6] *= -1
liyinhao's avatar
liyinhao committed
111
        _write_oriented_bbox(pred_bboxes,
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
                             osp.join(result_path, f'{filename}_pred.obj'))


def show_seg_result(points,
                    gt_seg,
                    pred_seg,
                    out_dir,
                    filename,
                    palette,
                    ignore_index=None,
                    show=False):
    """Convert results into format that is directly readable for meshlab.

    Args:
        points (np.ndarray): Points.
        gt_seg (np.ndarray): Ground truth segmentation mask.
        pred_seg (np.ndarray): Predicted segmentation mask.
        out_dir (str): Path of output directory
        filename (str): Filename of the current frame.
        palette (np.ndarray): Mapping between class labels and colors.
        ignore_index (int, optional): The label index to be ignored, e.g. \
            unannotated points. Defaults to None.
        show (bool, optional): Visualize the results online. Defaults to False.
    """
136
137
138
139
    # we need 3D coordinates to visualize segmentation mask
    if gt_seg is not None or pred_seg is not None:
        assert points is not None, \
            '3D coordinates are required for segmentation visualization'
140
141
142
143
144
145
146
147
148
149
150

    # filter out ignored points
    if gt_seg is not None and ignore_index is not None:
        if points is not None:
            points = points[gt_seg != ignore_index]
        if pred_seg is not None:
            pred_seg = pred_seg[gt_seg != ignore_index]
        gt_seg = gt_seg[gt_seg != ignore_index]

    if gt_seg is not None:
        gt_seg_color = palette[gt_seg]
151
        gt_seg_color = np.concatenate([points[:, :3], gt_seg_color], axis=1)
152
153
    if pred_seg is not None:
        pred_seg_color = palette[pred_seg]
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        pred_seg_color = np.concatenate([points[:, :3], pred_seg_color],
                                        axis=1)

    # online visualization of segmentation mask
    # we show three masks in a row, scene_points, gt_mask, pred_mask
    if show:
        from .open3d_vis import Visualizer
        mode = 'xyzrgb' if points.shape[1] == 6 else 'xyz'
        vis = Visualizer(points, mode=mode)
        if gt_seg is not None:
            vis.add_seg_mask(gt_seg_color)
        if pred_seg is not None:
            vis.add_seg_mask(pred_seg_color)
        vis.show()
168
169
170
171
172
173
174
175

    result_path = osp.join(out_dir, filename)
    mmcv.mkdir_or_exist(result_path)

    if points is not None:
        _write_obj(points, osp.join(result_path, f'{filename}_points.obj'))

    if gt_seg is not None:
176
        _write_obj(gt_seg_color, osp.join(result_path, f'{filename}_gt.obj'))
177
178

    if pred_seg is not None:
179
180
        _write_obj(pred_seg_color, osp.join(result_path,
                                            f'{filename}_pred.obj'))
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247


def show_multi_modality_result(img,
                               gt_bboxes,
                               pred_bboxes,
                               proj_mat,
                               out_dir,
                               filename,
                               depth_bbox=False,
                               img_metas=None,
                               show=True,
                               gt_bbox_color=(61, 102, 255),
                               pred_bbox_color=(241, 101, 72)):
    """Convert multi-modality detection results into 2D results.

    Project the predicted 3D bbox to 2D image plane and visualize them.

    Args:
        img (np.ndarray): The numpy array of image in cv2 fashion.
        gt_bboxes (np.ndarray): Ground truth boxes.
        pred_bboxes (np.ndarray): Predicted boxes.
        proj_mat (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        out_dir (str): Path of output directory
        filename (str): Filename of the current frame.
        depth_bbox (bool): Whether we are projecting camera bbox or lidar bbox.
        img_metas (dict): Used in projecting cameta bbox.
        show (bool): Visualize the results online. Defaults to True.
        gt_bbox_color (str or tuple(int)): Color of bbox lines.
           The tuple of color should be in BGR order. Default: (255, 102, 61)
        pred_bbox_color (str or tuple(int)): Color of bbox lines.
           The tuple of color should be in BGR order. Default: (72, 101, 241)
    """
    if depth_bbox:
        from .open3d_vis import draw_depth_bbox3d_on_img as draw_bbox
    else:
        from .open3d_vis import draw_lidar_bbox3d_on_img as draw_bbox

    result_path = osp.join(out_dir, filename)
    mmcv.mkdir_or_exist(result_path)

    if show:
        show_img = img.copy()
        if gt_bboxes is not None:
            show_img = draw_bbox(
                gt_bboxes, show_img, proj_mat, img_metas, color=gt_bbox_color)
        if pred_bboxes is not None:
            show_img = draw_bbox(
                pred_bboxes,
                show_img,
                proj_mat,
                img_metas,
                color=pred_bbox_color)
        mmcv.imshow(show_img, win_name='project_bbox3d_img', wait_time=0)

    if img is not None:
        mmcv.imwrite(img, osp.join(result_path, f'{filename}_img.png'))

    if gt_bboxes is not None:
        gt_img = draw_bbox(
            gt_bboxes, img, proj_mat, img_metas, color=gt_bbox_color)
        mmcv.imwrite(gt_img, osp.join(result_path, f'{filename}_gt.png'))

    if pred_bboxes is not None:
        pred_img = draw_bbox(
            pred_bboxes, img, proj_mat, img_metas, color=pred_bbox_color)
        mmcv.imwrite(pred_img, osp.join(result_path, f'{filename}_pred.png'))